Ростверк балочный: Ростверк: устройство монолитного и балочного ростверка | 5domov.ru

Содержание

Ростверк: устройство монолитного и балочного ростверка | 5domov.ru

Ростверк является самым оптимальным и универсальным решением для организации прочных, надежных и качественных оснований под дом прежде всего благодаря тому, что в данной конструкции воплощены наилучшие показатели столбчатых, свайных и ленточных фундаментов.

Ростверки можно устраивать на рельефах любой сложности с самыми разнообразными характеристиками грунтов без ограничений по типу и весу строений. Исключение составляют лишь цельноскальные породы, где разработка ям или скважин невозможна либо экономически нецелесообразна.

Оглавление

  1. Виды ростверка
  2. Устройство монолитного ростверка
  3. Устройство балочного ростверка

Виды ростверка

  • Низкий ростверк устраивают на сухих, плотных и сыпучих грунтах с минимальным влиянием паводковых, ливневых и талых вод.

Схема устройства низкого ростверка

  • Повышенный ростверк закладывают на почвах со слабой степенью пучинистости, где возможно значительное увлажнение поверхностного слоя грунта под воздействием ливневых, паводковых и талых вод.

Схема устройства повышенного ростверк

  • Высокий ростверк организуют на любых почвах со средней и высокой степенью пучинистости. В данном случае нижний край ленты ростверка приподнимают не менее чем на 10–15 см над уровнем земли во избежание воздействия сил напряжения от поверхностного взбухания почвы во время морозов.

Схема устройства высокого ростверка

Выбор типа ростверка зависит от состояния грунта, местных климатических условий и веса здания с учетом возможной снежной нагрузки. Определение количества столбиков и ширины монолитной ленты относится к ответственным проектным показателям. Потому эту часть расчетов лучше доверить специалистам. Разметка, подготовка ям под столбы или закладка свай производится по тем же технологиям, что для свайных и столбчатых фундаментов, а заливка ленты аналогична устройству ленточного фундамента.

Примечание.  Технологические отверстия для ввода инженерных систем в дом ни в коем случае нельзя устраивать в ленточной и столбчатой части ростверка. Прокладывать трубы и кабели необходимо под лентой и между столбами ростверка. Чрезвычайно важно соблюдать рекомендуемые параметры заглубления в грунт, учитывая ширину ростверка на 10 см больше ширины основания стены:

  • для легких щитовых и каркасных построек — не менее 30 см;
  • для бревенчатых и брусчатых домов — не менее 50 см;
  • для тяжелых кирпичных и каменных зданий — не менее 70 см.

Устройство монолитного ростверка

Устройство монолитного ростверка повторяет технологические операции закладки опор по принципу столбчатых и свайных фундаментов и заливки ленты, опоясывающей оголовки столбов. Вместе с тем имеются некоторые отличительные особенности.

Подошва под столбы, предусмотренная в столбчатых фундаментах, не закладывается, если это не оговорено специальными проектными решениями. Обратная засыпка по уровню земли осуществляется сразу после снятия опалубки с заливки столбиков либо в два этапа для низких ростверков: по завершении устройства столбов и после снятия опалубки с монолитной ленты фундамента.

Закладка опор

Мероприятия по разметке и определению местоположения столбов при устройстве ростверка аналогичны описанным в разделе другой статьи «Разметка столбчатого фундамента». После выполнения этих работ разрабатывают ямы и по необходимости организуют песчаную либо гравийную подушку.

Затем армируют (1), устанавливают опалубку (2) и заливают бетонную смесь в короб (3).

На этом этапе после укладки первого слоя раствора толщиной 20–30 см арматурный каркас немного приподнимают так, чтобы нижний конец не касался дна (подушки), а верхний отстоял от шнура разметки не менее чем на 5 см.

Поэтому высота каркаса должна быть на 10 см меньше расстояния от дна (подушки) до шнура разметки. После затвердения бетона опалубку демонтируют и осуществляют обратную засыпку.

Устройство ленточной части ростверка

Перед началом закладки ленточной части ростверка устанавливают армированные каркасы с учетом отступа от дна и стенок опалубки не менее чем на 5 см.

Затем сооружают опалубку (1) и заливают бетонную смесь (2).

Установку опалубки, заливку бетона, демонтаж опалубки и выдержку бетонной смеси осуществляют согласно рекомендациям, изложенным в подразделе «Бетонные работы» для ленточных фундаментов.

Устройство балочного ростверка

К устройству балочного ростверка прибегают, когда необходимо ускорить работы по закладке фундамента и нет времени ждать около месяца, пока застынет бетонный раствор. Как правило, балочный ростверк сооружают в высоком варианте. Для этого опорную часть обустраивают по технологии столбчатых фундаментов из железобетона с организацией опорной площадки для блоков в оголовке.

По прочностным характеристикам сборный фундамент несколько уступает монолитным, поэтому на слабых грунтах с разной степенью усадки почвы использовать блоки не рекомендуется.

Закладка опорной площадки под блоки

Технология сооружения опорной площадки под блоки применяется только в устройстве монолитных опор ростверка и заключается в утолщении сечения всего столба (нижний ряд схемы) либо его оголовочной части (средний ряд схемы). При этом обязательно учитывается местоположение опор. Для промежуточных столбов утолщение закладывают в обе стороны по направлению стен.

Для угловых столбов — в обе стороны перпендикулярно направлению стен.

Для столбов, расположенных в местах пересечения стен, — в три стороны: по направлению наружных стен и перпендикулярно направлению перегородки.

Утолщения столбов или их оголовков под опорную площадку в обязательном порядке должны быть армированы.

При закладке опорной площадки важно учесть шаг размещения опор в зависимости от типа используемых блоков (этот вопрос подробно освещен в статье «Блочный фундамент»). Расстояние между ними (D) высчитывается по формуле D = L – 2l, где L — длина блока, l — длина опорной части
блока (б). Ширина столбов по линии стен закладывается по ширине блоков с допуском ±50 мм в сторону сужения и утолщения. Кроме того, необходимо выдержать бетонную заливку столбов не менее месяца до набора 80 % прочности, иначе края столбов не смогут выдержать вес блоков.

Монтаж железобетонных блоков

К монтажу железобетонных блоков приступают только после того как столбы установлены по размерам, бетон набрал достаточную прочность, а к выпускам арматуры приварены стержни с резьбой.

Каждый блок размещают точно по площади их опорных частей.

Далее выполняют замоноличивание пустот между блоками по линии стен, на углах и в местах ответвлений (1), предварительно установив опалубки (2).

Затем поверх свежезалитой бетонной смеси накладывают металлические пластины с заранее просверленными от верстиями под стержни и затягивают болтами (3).

Накладные пластины вырезают из металлического листа толщиной не менее 3 мм, их форму определяют в зависимости от месторасположения на фундаменте. При этом выпуски под фиксацию блоков устраивают по размерам опорных площадок столбов (3). Опалубку можно снимать на следующий день после заливки бетона и сразу приступать к возведению стен.

В случае с монолитным ростверком приходится ждать набора прочности ленты еще месяц.

Гидроизоляция и теплоизоляционные работы

Гидроизоляцию опорной части и заглубленного варианта ленты ростверка осуществляют по технологиям, рекомендованным в статье «Столбчатый фундамент». Теплоизоляцию пола при устройстве высокого ростверка проводят в следующем порядке.

Сначала заполняют пустое пространство под ростверком кирпичной, каменной или бутовой кладкой, затем осуществляют засыпку внутренней площади фундамента с тщательной трамбовкой так, чтобы ее уровень был выше нижнего края ленты ростверка не менее 10 см.

Схема устройства теплоизоляции пола для высокого ростверка

Обычно для засыпки вполне хватает грунта, вынутого из ям при устройстве столбов. Впоследствии во время выполнения фасадных работ внешняя поверхность забирки и ростверка оштукатуривается, а вокруг фундамента закладывается отмостка.

Оцените статью


Производство балочного ростверка по выгодным ценам | Заказать изготовление ростверков | Москва, Санкт-Петербург, Челябинск, Новосибирск, Пермь, Тюмень, Владивосток


Наша компания занимается производством металлических ростверков для монтажа свайных и столбчатых фундаментов. Горизонтальная силовая линия объединяет опоры в единую конструкцию, жесткость которой сравнима с показателями ленточного фундаментного основания.


Ростверк отвечает за равномерное распределение нагрузки от сооружения на опоры. Монтируется из стальных балок, закрепленных на оголовках свай или столбов, образуя жесткую раму. Горизонтальный элемент фундамента успешно противостоит вертикальным, выдергивающим нагрузкам, обеспечивает стабильность подземного основания постройки. Фундаменты, выполненные по данной технологии, при минимальной площади сечения элементов выдерживают высокие эксплуатационные нагрузки, подходят для любого климата.

Типы и преимущества


Стальной ростверк обычно монтируется из двутавровых балок или швеллеров – технические параметры конструкции рассчитываются с учетом типа свай, эксплуатационных нагрузок. Изготавливается по типовым сериям и рабочей документации проекта. Для антикоррозийной защиты обычно используется горячая оцинковка.


Различают три типа ростверка:

  • низкий (заглубленный) – расположен ниже уровня земли;
  • повышенный (незаглубленный) – подошва элемента находится на уровне грунта;
  • высокий (висящий, подвесной) – горизонтальная часть фундаментного основания располагается выше уровня грунта (или воды, если речь о причалах, иных подобных сооружениях).


Преимущества конструкций:

  • применение независимо от типа грунта, климатических условий;
  • высокие показатели прочности, устойчивости ко всем видам нагрузок;
  • быстрый монтаж;
  • долговечность;
  • экономическая целесообразность – свайные фундаменты с металлическим ростверком дешевле железобетонных конструкций, сокращают сроки строительства сооружения.

Особенности использования


Свайные фундаменты с ростверком применяются на грунтах с глубоким промерзанием, на участках где показатели несущей способности грунта ниже нормы. Востребованы при возведении легких сооружений, в число которых входят опоры ЛЭП, прожекторные мачты и т.д., при надземной прокладке технологических коммуникаций, газо- и нефтепроводов.


Использование свай и ростверка из стали дает возможность монтировать устойчивые, надежные фундаментные основания требуемой высоты в условиях ограниченного пространства. К данной технологии нередко прибегают при необходимости сократить сроки строительства, снизить финансовые затраты на фундаментные работы.

Наше предложение


У нас можно заказать балочный ростверк, выполненный по техническим условиям собственной разработки. По ТУ 5261-007-69050276-2011 изготавливается номенклатура для комплектов по проектам 20006, 20015, которые были разработаны ОАО «Сев ЗАП НТЦ». Мы также выпускаем ростверки по серии 3.407.9-146 «Севзапэнергосетьпроект». Наша компания обладает солидным опытом по изготовлению продукции для объектов энергетики, нефтегазодобывающей промышленности по предоставленной рабочей документации.


Цена свайного ростверка складывается из стоимости используемого металлопроката, изготовления, нанесения антикоррозийного покрытия (в соответствии с ТЗ заказчика), доставки, если она необходима.


Наша компания работает в Екатеринбурге, Санкт-Петербурге, Москве, Новосибирске, Тюмени, Челябинске, Перми, Владивостоке.

расчет, строительство, армирование и заливка монолитного ростверка

Строительство домов и других сооружений осуществляется на фундаментах различного типа. Свайно-ростверковый фундамент возводится, если к тому имеются основания.

Подобный фундамент строится в случае:

  • слабые пучинистые грунты;
  • большие перепады в рельефе участка строительства;
  • высокий уровень грунтовых вод;
  • наличие вечной мерзлоты и прочие причины.

Сваи могут применяться различные, как по способу погружения, так и по материалу изготовления. Но в любом случае, в прочную единую конструкцию их связывает ростверк.

Виды ростверка

Ростверк представляет собой конструкцию в виде единой плиты или балок, которые связаны с каждой из свай. В случае балочного ростверка получается конструкция, напоминающая ленточный фундамент, но в отличие от последнего,  лента ростверка практически никогда не заглубляется в землю. Это связано с тем, что грунт зимой из-за мороза выпирает, и это его свойство может негативно сказаться на целостности ростверка.

Соединение отдельных элементов ростверка и свай может осуществляться при помощи сварки и монолитных участков.

Ростверк из бетона с арматурным каркасом

Ростверк может выполняться : 

  •  из бетона с укладкой арматурного каркаса,
  • может быть сборным из элементов заводского изготовления,
  • может быть комбинированным.

Железобетонный ростверк

Выполняя фундамент свайный с ростверком, можно использовать различные материалы и способы.

При возведении деревянных домов на сваях из дерева ростверком служит нижний венец дома, связывающий все сваи.

Можно сделать ростверк из металла, используя в виде балок швеллеры или двутавры. Но цена такого ростверка будет высока. К тому же, сделать такой ростверк вручную не по силам даже двоим. Нужно или приглашать бригаду  рабочих, или арендовать подъемный кран. И то и другое значительно увеличивает стоимость всего строительства.

И последний довод, не в пользу металлического ростверка — металл рано или поздно, даже обработанный антикоррозийными составами, будет подвержен разрушению ржавчиной, что приведет к полной реконструкции строения.

Металлический ростверк

Наиболее удобным в плане технологии и цены будет фундамент с монолитным ростверком, выполненным из железобетона. Потому что даже готовые железобетонные балки, укладываемые на головы свай, также имеют слишком большой вес. Чтобы уложить такие балки  или плиты потребуется подъемная техника.

Как рассчитать свайный фундамент с ростверком

В первую очередь, следует определить состав грунта на участке.

И в большей мере тот, который залегает на предполагаемой глубине устраиваемого фундамента, поскольку от этого будет зависеть:

  • длина свай;
  • их конструкция;
  • расстояние между сваями
  • несущая способность сваи.

При расчете свайного  фундамента с ростверком определяются нагрузки, оказываемые массой дома на сваю и грунт.

Общий вес здания складывается:

  • из его веса;
  • веса кровли;
  • веса перекрытий;
  • временных нагрузок в виде снега;
  • полезных нагрузок в виде людей, мебели, инженерного и бытового  оборудования.

Данные по нагрузкам умножаются на поправочный коэффициент, равный 1.3.

Дальнейший расчет производится, учитывая общую площадь строения. Обычно свайные фундаменты с ростверком применяются для домов с площадью не менее 300кв.м. При меньшей площади такие фундаменты нецелесообразны с экономической точки зрения.

Точный расчет свайного фундамента может сделать только квалифицированный инженер – строитель. Своими силами такой расчет сделать невозможно.

На основании инженерного расчета, где указано количество свай, шаг между ними, глубина их погружения, можно своими силами приступать к устройству  свайного фундамента с ростверком.

Сваи для частного дома можно сделать как буронабивными, так и винтовыми. Второй вариант более экономичный, так как требует меньше времени на устройство. При этом следует учитывать, что винтовые сваи можно заглублять своими силами, без привлечения специальной техники. Отпадает необходимость в расчистке участка от верхнего слоя почвы и выравнивания рельефа.

Главное условие при устройстве свайно-винтового фундамента с ростверком – это грамотно сделанный расчет несущей способности свай, их количества и расположения на участке строительства.

Армирование ростверка свайного фундамента

Свайный фундамент, независимо от вида свай, обязательно должен быть армированным. Сваи армируются для придания им надлежащей прочности, точно также и ростверк армируется для улучшения своей несущей способности.

Кроме этого, арматура, выступающая из бетона на голове сваи, служит местом соединения свай и ростверка в единую конструкцию. Даже когда железобетонные сваи срубаются для придания горизонтальности в плане, некоторая часть арматуры остается для последующего крепления сваркой с арматурой балок или плит ростверка.

Неармированные элементы ростверка попросту не смогут выдержать тех нагрузок, которые приходятся на них от веса стен и перекрытий.

При  устройстве  свайного фундамента с ростверком армирование осуществляется арматурой периодического профиля диаметром 10-12 мм, иногда используется арматура диаметра 14 мм.

При устройстве ленточных ростверков арматурный каркас изготавливается из двух поясов – верхнего и нижнего, которые связываются между собой вертикальными металлическими стержнями,  диаметром 6-8 мм. Меньший диаметр обусловлен тем, что вертикальные прутки арматуры практически не несут никакой нагрузки и предназначены только лишь для придания формы арматурному каркасу.

Каждый пояс состоит, как минимум, из двух горизонтально расположенных прутьев периодического профиля. Оба пояса связываются между собой посредством вертикальных стержней и вязальной проволоки. Причем вертикальные стержни не обязательно должны быть из стали периодического профиля.

На заводах ЖБИ при изготовлении арматурных каркасов для свай используются сварочные автоматы, которые сваривают поперечные соединения точечной сваркой, но сами поперечные круги или квадраты (в зависимости от формы сечения сваи) связываются с продольными арматурными прутьями только методом вязания.

Строительство фундамента с ростверком в виде плиты требует больших затрат на бетонную смесь и арматуру. Но принцип армирования такой же, как и в ленточных фундаментах. Также верхний пояс арматурного каркаса представляет собой сетку из стержней периодического профиля диаметром 10-14 мм и вертикальных стержней меньшего диаметра.

Фундамент с ростверком в виде плиты

Стоимость фундамента с ростверком, в основном, зависит от количества использованной бетонной смеси, количества арматуры, объема пиломатериала, затраченного на опалубочные работы и еще некоторых факторов.

По своей конструкции ростверки бывают:

  • высокими,
  • низкими.

Заглубленный ростверк находится своей нижней плоскостью на  одном уровне с землей или на несколько сантиметров  ниже уровня почвы.

Между сваями копается неглубокая траншея, в которую послойно укладывают песок и щебень с трамбованием.

Оголовки свай, которые находятся на одном уровне с подстилающим слоем,  должны быть закрыты гидроизоляцией.

Устанавливается опалубка, в которую монтируют арматурный каркас. Арматура каркаса и оголовок свай связываются между собой и производится заливка фундамента. При этом следует арматурный каркас укрепить в опалубке таким образом, чтобы он не доходил до стенок опалубки на 5 см.

Но такое устройство ростверка возможно лишь  на непучинистых грунтах. В противном случае, выдавленный морозом грунт может или выгнуть балку ростверка посередине, или совсем её оторвать от сваи. Поэтому, прежде чем устраивать такой ростверк, следует поинтересоваться видом грунта под вашим строением.

Сборные ростверки могут устраиваться как высокими, так и низкими. При устройстве высокого ростверка  готовую балку устанавливают на железобетонный оголовок, который предварительно смонтирован на свае при помощи монтажного хомута и залит бетонной смесью.

Низкий сборный ростверк устраивается непосредственно на выравнивающей подсыпке. Соединение балки и сваи происходит путем устройства монолитного участка в отверстиях балки, куда отгибаются выступающие из сваи арматурные стержни.

Стальные ростверки СЕРИЯ 3.407.9-146

марка фундаментасостав фундаментамасса м/к, кгед. измцена, руб/штОнлайн-заявка
ст3сп5 холодное цинкование09Г2С горячее цинкование
Ф1.35-2Наголовник М42 -1 шт29,7шт3 861,004 158,00Заказать
Ф1.42-2Наголовник М42 -1 шт29,7шт3 861,004 158,00Заказать
Ф1. 56-2Наголовник М42 -1 шт29,7шт3 861,004 158,00Заказать
Ф1.35-4Наголовник М43 -1 шт39,1шт5 083,005 474,00Заказать
Ф1.42-4Наголовник М43 -1 шт39,1шт5 083,005 474,00Заказать
Ф1.56-4Наголовник М43 -1 шт39,1шт5 083,005 474,00Заказать
Ф1.35-1Опорная плита ПО1 -1 шт21шт2 730,002 940,00Заказать
Ф1.42-1Опорная плита ПО1 -1 шт21шт2 730,002 940,00Заказать
Ф1. 56-1Опорная плита ПО1 -1 шт21шт2 730,002 940,00Заказать
Ф1.35-0Скоба М45 -1 шт27,3шт3 549,003 822,00Заказать
Ф1.42-0Скоба М46 -1 шт37,8шт4 914,005 292,00Заказать
Ф1.56-0Скоба М44 -1 шт60,9шт7 917,008 526,00Заказать
Ф2.35-2-16Подкладка М47 -2 шт, Балка Б35-2-16 -1 шт91,6шт11 908,0012 824,00Заказать
Ф2.35-2-20Подкладка М48 -2 шт, Балка Б35-2-20 -1 шт120,6шт15 678,0016 884,00Заказать
Ф2. 35-2-24Подкладка М49 -2 шт, Балка Б35-2-24 -1 шт156,1шт20 293,0021 854,00Заказать
Ф2.42-2-16Подкладка М47 -2 шт, Балка Б35-2-16 -1 шт91,6шт11 908,0012 824,00Заказать
Ф2.42-2-20Подкладка М48 -2 шт, Балка Б35-2-20 -1 шт120,6шт15 678,0016 884,00Заказать
Ф2.42-2-24Подкладка М49 -2 шт, Балка Б35-2-24 -1 шт156,1шт20 293,0021 854,00Заказать
Ф2.56-2-24Подкладка М50 -2 шт, Балка Б56-2-24 -1 шт190,8шт24 804,0026 712,00Заказать
Ф2. 56-2-30Подкладка М52 -2 шт, Балка Б56-2-30 -1 шт257,1шт33 423,0035 994,00Заказать
Ф2.35-4-20Подкладка М49 -2 шт, Балка Б35-4-20 -1 шт193,3шт25 129,0027 062,00Заказать
Ф2.35-4-24Подкладка М49 -2 шт, Балка Б35-4-24 -1 шт232,9шт30 277,0032 606,00Заказать
Ф2.42-4-20Подкладка М49 -2 шт, Балка Б35-4-20 -1 шт193,3шт25 129,0027 062,00Заказать
Ф2.42-4-24Подкладка М49 -2 шт, Балка Б35-4-24 -1 шт232,9шт30 277,0032 606,00Заказать
Ф2. 56-4-20Подкладка М50 -2 шт, Балка Б56-4-20 -1 шт253,4шт32 942,0035 476,00Заказать
Ф2.56-4-24Подкладка М50 -2 шт, Балка Б56-4-24 -1 шт305,4шт39 702,0042 756,00Заказать
Ф2.35-1-24Подкладка М49 -2 шт, Балка Б35-1-24 -1 шт, Опорная плита ПО1 -1 шт164,9шт21 437,0023 086,00Заказать
Ф2.42-1-24Подкладка М49 -2 шт, Балка Б35-1-24 -1 шт, Опорная плита ПО1 -1 шт164,9шт21 437,0023 086,00Заказать
Ф2.56-1-30Подкладка М52 -2 шт, Балка Б56-1-30 -1 шт, Опорная плита ПО1 -1 шт268,7шт34 931,0037 618,00Заказать
Ф2. 35-1-30Подкладка М51 -2 шт, Балка Б35-1-30 -1 шт, Опорная плита ПО1 -1 шт206,2шт26 806,0028 868,00Заказать
Ф2.42-1-30Подкладка М51 -2 шт, Балка Б35-1-30 -1 шт, Опорная плита ПО1 -1 шт206,2шт26 806,0028 868,00Заказать
Ф2.56-1-40Подкладка М54 -2 шт, Балка Б56-1-40 -1 шт, Опорная плита ПО1 -1 шт376,1шт48 893,0052 654,00Заказать
Ф2.35-1/5-24Подкладка М49 -2 шт, Балка Б35-1/5-24 -1 шт, Опорная плита ПО1 -1 шт169,2шт21 996,0023 688,00Заказать
Ф2.42-1/5-24Подкладка М49 -2 шт, Балка Б35-1/5-24 -1 шт, Опорная плита ПО1 -1 шт169,2шт21 996,0023 688,00Заказать
Ф2. 56-1/5-30Подкладка М52 -2 шт, Балка Б56-1/5-30 -1 шт, Опорная плита ПО1 -1 шт278,8шт36 244,0039 032,00Заказать
Ф2.35-1/5-30Подкладка М51 -2 шт, Балка Б35-1/5-30 -1 шт, Опорная плита ПО1 -1 шт218,2шт28 366,0030 548,00Заказать
Ф2.42-1/5-30Подкладка М51 -2 шт, Балка Б35-1/5-30 -1 шт, Опорная плита ПО1 -1 шт218,2шт28 366,0030 548,00Заказать
Ф2.56-1/5-40Подкладка М54 -2 шт, Балка Б35-1/5-40 -1 шт, Опорная плита ПО1 -1 шт389,9шт50 687,0054 586,00Заказать
Ф2.35-1/10-24Подкладка М49 -2 шт, Балка Б35-1/10-24 -1 шт, Опорная плита ПО1 -1 шт168,4шт21 892,0023 576,00Заказать
Ф2. 42-1/10-24Подкладка М49 -2 шт, Балка Б35-1/10-24 -1 шт, Опорная плита ПО1 -1 шт168,4шт21 892,0023 576,00Заказать
Ф2.56-1/10-30Подкладка М52 -2 шт, Балка Б56-1/10-30 -1 шт, Опорная плита ПО1 -1 шт278,4шт36 192,0038 976,00Заказать
Ф2.35-1/10-30Подкладка М51 -2 шт, Балка Б35-1/10-30 -1 шт, Опорная плита ПО1 -1 шт217,8шт28 314,0030 492,00Заказать
Ф2.42-1/10-30Подкладка М51 -2 шт, Балка Б35-1/10-30 -1 шт, Опорная плита ПО1 -1 шт217,8шт28 314,0030 492,00Заказать
Ф2.56-1/10-40Подкладка М54 -2 шт, Балка Б56-1/10-40 -1 шт, Опорная плита ПО1 -1 шт389,6шт50 648,0054 544,00Заказать
Ф2. 35-0-20Подкладка М51 -2 шт, Балка Б35-0-20 -1 шт143,6шт18 668,0020 104,00Заказать
Ф2.35-0-30Подкладка М53 -2 шт, Балка Б35-0-30 -1 шт234,2шт30 446,0032 788,00Заказать
Ф2.42-0-20Подкладка М51 -2 шт, Балка Б35-0-20 -1 шт143,6шт18 668,0020 104,00Заказать
Ф2.42-0-30Подкладка М53 -2 шт, Балка Б35-0-30 -1 шт234,2шт30 446,0032 788,00Заказать
Ф2.56-0-30Подкладка М52 -2 шт, Балка Б56-0-30 -1 шт277,7шт36 101,0038 878,00Заказать
Ф2. 56-0-40Подкладка М54 -2 шт, Балка Б56-0-40 -1 шт407,9шт53 027,0057 106,00Заказать
Ф2.35-0-3Скоба М45 -2 шт, Траверса Т35-3 -1 шт107,3шт13 949,0015 022,00Заказать
Ф2.35-0-4Скоба М45 -2 шт, Траверса Т35-4 -1 шт118,2шт15 366,0016 548,00Заказать
Ф2.42-0-3Скоба М46 -2 шт, Траверса Т35-3 -1 шт128,3шт16 679,0017 962,00Заказать
Ф2.42-0-4Скоба М46 -2 шт, Траверса Т35-4 -1 шт139,2шт18 096,0019 488,00Заказать
Ф2. 56-0-4Скоба М44 -2 шт, Траверса Т56-4 -1 шт201,3шт26 169,0028 182,00Заказать
Ф4.35-2-20/16Подкладка М47 -4 шт, Балка Б35-2-20 -1 шт, Балка Б35-16 -2 шт297,8шт38 714,0041 692,00Заказать
Ф4.35-2-24/20Подкладка М48 -4 шт, Балка Б35-2-24 -1 шт, Балка Б35-20 -2 шт388,7шт50 531,0054 418,00Заказать
Ф4.42-2-20/16Подкладка М47 -4 шт, Балка Б35-2-20 -1 шт, Балка Б35-16 -2 шт297,8шт38 714,0041 692,00Заказать
Ф4.42-2-24/20Подкладка М48 -4 шт, Балка Б35-2-24 -1 шт, Балка Б35-20 -2 шт388,7шт50 531,0054 418,00Заказать
Ф4. 56-2-24/20Подкладка М50 -4 шт, Балка Б56-2-24 -1 шт, Балка Б56-20 -2 шт519,8шт67 574,0072 772,00Заказать
Ф4.56-2-30/24Подкладка М50 -4 шт, Балка Б56-2-30 -1 шт, Балка Б56-24 -2 шт684,1шт88 933,0095 774,00Заказать
Ф4.35-4-20/20Подкладка М48 -4 шт, Балка Б35-4-20 -1 шт, Балка Б35-20 -2 шт425,9шт55 367,0059 626,00Заказать
Ф4.35-4-24/20Подкладка М48 -4 шт, Балка Б35-4-24 -1 шт, Балка Б35-20 -2 шт465,5шт60 515,0065 170,00Заказать
Ф4.35-4-30/24Подкладка М48 -4 шт, Балка Б35-4-30 -1 шт, Балка Б35-24 -2 шт613,3шт79 729,0085 862,00Заказать
Ф4. 42-4-20/20Подкладка М48 -4 шт, Балка Б35-4-20 -1 шт, Балка Б35-20 -2 шт425,9шт55 367,0059 626,00Заказать
Ф4.42-4-24/20Подкладка М48 -4 шт, Балка Б35-4-24 -1 шт, Балка Б35-20 -2 шт465,5шт60 515,0065 170,00Заказать
Ф4.42-4-30/24Подкладка М49 -4 шт, Балка Б35-4-30 -1 шт, Балка Б35-24 -2 шт613,3шт79 729,0085 862,00Заказать
Ф4.56-4-24/24Подкладка М50 -4 шт, Балка Б56-4-24 -1 шт, Балка Б56-24 -2 шт737,4шт95 862,00103 236,00Заказать
Ф4.56-4-30/30Подкладка М52 -4 шт, Балка Б56-4-30 -1 шт, Балка Б56-30 -2 шт945,1шт122 863,00132 314,00Заказать
Ф4. 35-4-29С/24Подкладка М49 -4 шт, Балка Б35-4-29с -1 шт, Балка Б35-24 -2 шт643,5шт83 655,0090 090,00Заказать
Ф4.42-4-29С/24Подкладка М49 -4 шт, Балка Б35-4-29с -1 шт, Балка Б35-24 -2 шт643,5шт83 655,0090 090,00Заказать
Ф4.56-4-39С/30Подкладка М52 -4 шт, Балка Б56-4-39с -1 шт, Балка Б56-30 -2 шт1039,3шт135 109,00145 502,00Заказать
Ф4.35-4т-30/24Подкладка М49 -4 шт, Балка Б35-4т-30 -1 шт, Балка Б35-24 -2 шт626,6шт81 458,0087 724,00Заказать
Ф4.35-4т-40/24Подкладка М49 -4 шт, Балка Б35-4т-40 -1 шт, Балка Б35-24 -2 шт702,8шт91 364,0098 392,00Заказать
Ф4. 42-4т-30/24Подкладка М49 -4 шт, Балка Б35-4т-30 -1 шт, Балка Б35-24 -2 шт626,6шт81 458,0087 724,00Заказать
Ф4.42-4т-40/24Подкладка М49 -4 шт, Балка Б35-4т-40 -1 шт, Балка Б35-24 -2 шт702,8шт91 364,0098 392,00Заказать
Ф4.56-4т-40/30Подкладка М52 -4 шт, Балка Б56-4т-40 -1 шт, Балка Б56-30 -2 шт1054,3шт137 059,00147 602,00Заказать
Ф4.56-4т-40У/30Подкладка М52 -4 шт, Балка Б56-4т-40у -1 шт, Балка Б56-30 -2 шт1073,5шт139 555,00150 290,00Заказать
Ф4.35-1-24/20Подкладка М48 -4 шт, Балка Б35-1-24 -1 шт, Балка Б35-20 -2 шт, Опорная плита ПО1 -1 шт397,5шт51 675,0055 650,00Заказать
Ф4. 42-1-24/20Подкладка М48 -4 шт, Балка Б35-1-24 -1 шт, Балка Б35-20 -2 шт, Опорная плита ПО1 -1 шт397,5шт51 675,0055 650,00Заказать
Ф4.56-1-30/24Подкладка М50 -4 шт, Балка Б56-1-30 -1 шт, Балка Б56-24 -2 шт, Опорная плита ПО1 -1 шт695,7шт90 441,0097 398,00Заказать
Ф4.35-1-30/24Подкладка М48 -4 шт, Балка Б35-1-30 -1 шт, Балка Б35-24 -2 шт, Опорная плита ПО1 -1 шт536,2шт69 706,0075 068,00Заказать
Ф4.42-1-30/24Подкладка М48 -4 шт, Балка Б35-1-30 -1 шт, Балка Б35-24 -2 шт, Опорная плита ПО1 -1 шт536,2шт69 706,0075 068,00Заказать
Ф4.56-1-40/30Подкладка М52 -4 шт, Балка Б56-1-40 -1 шт, Балка Б56-30 -2 шт, Опорная плита ПО1 -1 шт949,3шт123 409,00132 902,00Заказать
Ф4. 35-1/5-24/20Подкладка М48 -4 шт, Балка Б35-1/5-24 -1 шт, Балка Б35-20 -2 шт, Опорная плита ПО1 -1 шт401,8шт52 234,0056 252,00Заказать
Ф4.42-1/5-24/20Подкладка М48 -4 шт, Балка Б35-1/5-24 -1 шт, Балка Б35-20 -2 шт, Опорная плита ПО1 -1 шт401,8шт52 234,0056 252,00Заказать
Ф4.56-1/5-30/24Подкладка М50 -4 шт, Балка Б56-1/5-30 -1 шт, Балка Б56-24 -2 шт, Опорная плита ПО1 -1 шт705,8шт91 754,0098 812,00Заказать
Ф4.35-1/5-30/24Подкладка М49 -4 шт, Балка Б35-1/5-30 -1 шт, Балка Б35-24 -2 шт, Опорная плита ПО1 -1 шт548,2шт71 266,0076 748,00Заказать
Ф4.42-1/5-30/24Подкладка М49 -4 шт, Балка Б35-1/5-30 -1 шт, Балка Б35-24 -2 шт, Опорная плита ПО1 -1 шт548,2шт71 266,0076 748,00Заказать
Ф4. 56-1/5-40/30Подкладка М52 -4 шт, Балка Б35-1/5-40 -1 шт, Балка Б56-30 -2 шт, Опорная плита ПО1 -1 шт963,1шт125 203,00134 834,00Заказать
Ф4.35-1/10-24/20Подкладка М48 -4 шт, Балка Б35-1/10-24 -1 шт, Балка Б35-20 -2 шт, Опорная плита ПО1 -1 шт401шт52 130,0056 140,00Заказать
Ф4.42-1/10-24/20Подкладка М48 -4 шт, Балка Б35-1/10-24 -1 шт, Балка Б35-20 -2 шт, Опорная плита ПО1 -1 шт401шт52 130,0056 140,00Заказать
Ф4.56-1/10-30/24Подкладка М50 -4 шт, Балка Б56-1/10-30 -1 шт, Балка Б56-24 -2 шт, Опорная плита ПО1 -1 шт705,2шт91 676,0098 728,00Заказать
Ф4.35-1/10-30/24Подкладка М49 -4 шт, Балка Б35-1/10-30 -1 шт, Балка Б35-24 -2 шт, Опорная плита ПО1 -1 шт547,8шт71 214,0076 692,00Заказать
Ф4. 42-1/10-30/24Подкладка М49 -4 шт, Балка Б35-1/10-30 -1 шт, Балка Б35-24 -2 шт, Опорная плита ПО1 -1 шт547,8шт71 214,0076 692,00Заказать
Ф4.56-1/10-40/30Подкладка М52 -4 шт, Балка Б56-1/10-40 -1 шт, Балка Б56-30 -2 шт, Опорная плита ПО1 -1 шт962,8шт125 164,00134 792,00Заказать
Ф4.35-0-20/16Подкладка М47 -4 шт, Балка Б35-0-20 -1 шт, Балка Б35-16 -2 шт315,8шт41 054,0044 212,00Заказать
Ф4.35-0-30/20Подкладка М48 -4 шт, Балка Б35-0-30 -1 шт, Балка Б35-20 -2 шт460,2шт59 826,0064 428,00Заказать
Ф4.42-0-20/16Подкладка М47 -4 шт, Балка Б35-0-20 -1 шт, Балка Б35-16 -2 шт315,8шт41 054,0044 212,00Заказать
Ф4. 42-0-30/20Подкладка М48 -4 шт, Балка Б35-0-30 -1 шт, Балка Б35-20 -2 шт460,2шт59 826,0064 428,00Заказать
Ф4.56-0-30/24Подкладка М50 -4 шт, Балка Б56-0-30 -1 шт, Балка Б56-24 -2 шт704,1шт91 533,0098 574,00Заказать
Ф4.56-0-40/30Подкладка М52 -4 шт, Балка Б56-0-40 -1 шт, Балка Б56-30 -2 шт981,1шт127 543,00137 354,00Заказать
Ф4.35-0-3с/3Скоба М45 -4 шт, Траверса Т35-3с -1 шт, Траверса Т35-3 -2 шт266шт34 580,0037 240,00Заказать
Ф4.35-0-4с/3Скоба М45 -4 шт, Траверса Т35-4с -1 шт, Траверса Т35-3 -2 шт278,1шт36 153,0038 934,00Заказать
Ф4. 42-0-3с/3Скоба М46 -4 шт, Траверса Т35-3с -1 шт, Траверса Т35-3 -2 шт308шт40 040,0043 120,00Заказать
Ф4.42-0-4с/3Скоба М46 -4 шт, Траверса Т35-4с -1 шт, Траверса Т35-3 -2 шт320,1шт41 613,0044 814,00Заказать

строительство свайного основания с ростверком, подушка, усиление

Буронабивной фундамент обустраивается на пучинистых грунтах со сложным рельефом.  Такое основание подводят под деревянные дома, гаражи, бани и любые строения из пенобетона. Ведь буронабивная основа фундамента не сможет удержать тяжелое здание, построенное из более плотных стройматериалов (кирпича, бетона и так далее).

Подобную избирательность компенсирует относительно низкая стоимость таких оснований. Монолитный или балочный ростверк, венчающий фундамент и буронабивные сваи, поддерживающие цокольную часть, обойдутся застройщику намного дешевле, чем полноценное ленточное основание. Поэтому, несмотря на все ограничения по применению, фундаменты с буронабивными сваями применяются в процессе строительства малоэтажных сооружений жилого и промышленного типа.

Устройство буронабивного фундамента

Конструкция буронабивного основания состоит из двух элементов – ростверка, оформленного как балочный каркас или монолитная плита и опорного узла, состоящего из множества свай, распределенных вдоль периметра основания. Причем типовой буронабивной фундамент с ростверком обустраивается как монолитная, конструкция. То есть, сваи и ростверк сооружаются путем заливки бетона в единую опалубку.

При заливке опор в качестве опалубки используются стены скважины, а ростверк заливается в щитовую конструкцию, возводимую по периметру фундамента. Такой подход, безусловно, увеличивает трудоемкость процесса, однако, прочность и жесткость конструкции, при этом, возрастают почти на порядок.

В итоге, практикуя должное армирование и дополнительное усиление фундамента буронабивными сваями, на таком основании можно воздвигнуть не только одноэтажный каркасный домик, но и полноценное многоэтажное строение из пеноблоков.

Глубина заложения опорного узла определяется исходя из уровня промерзания грунта. Причем опора опускается ниже глубины промерзания грунта, как минимум, на 30-50 сантиметров. Количество и диаметр опор определяется исходя из веса строения и несущей способности грунта. На тип ростверка влияет лишь платежеспособность заказчика: ведь  монолитный ростверк обойдется дороже балочного варианта.

Этапы строительства основания

Возведение основания на буронабивных сваях начинается с оценки грунта участка и расчетов параметров будущей конструкции основания. Для оценки ключевых характеристик грунта – глубины промерзания и несущей способности, приглашают особых специалистов. Расчеты параметров фундамента можно заказать в любом архитектурном бюро.

Самостоятельные изыскания, разумеется, возможны. Но, ввиду высокой цены ошибок, допущенных в процессе расчетов, от этой идеи лучше сразу отказаться.

Следующий этап посвящается обустройству строительной площадки, в границах которой будет возводиться фундамент свайный, буронабивной, с балочным или монолитным ростверком.  Для этого, в самом начале, необходимо избавить грунт от плодородного слоя почвы, содержащего нежелательную органику. Эту операцию проводят путем удаления 30, а то и 40-сантиметрового слоя почвы.

Далее, на освобожденном участке маркируют контур будущего фундамента и определяют месторасположение будущих свай. Собственно сваи, а точнее одна угловая свая, маркируется в первую очередь. А уже от этой угловой сваи отводят фасадную линию периметра, на которой указывают месторасположение второй угловой сваи.

После чего, очерчивая полуокружностями диагонали и длину (ширину) фундамента, определяют месторасположение остальных угловых свай. Соединив маркеры угловых свай можно вычертить периметр фундамента, вдоль которого, по известному шагу, маркируют положение промежуточных свай.

Возведение фундамента на буронабивных сваях — опорная часть

Обустройство опорной части фундамента начинается с организации буровых работ. Ведь именно бурение скважины под сваю позволяет создать идеальную шахту, играющую роль основы под опалубку.

В местах маркировки месторасположения свай должны стоять вехи – деревянные колышки. Такая веха удаляется с площадки перед бурением скважины. Поэтому буровую установку подвозят к строительной площадке от угла фундамента. Бурение выполняют постепенно, от скважины к скважине, удаляя грунт с площадки. Впрочем, процесс обустройства скважины можно организовать и с помощью ручного бура.

Причем совершенно необязательно бурить скважину большого диаметра за один проход. Вначале можно просто высверлить отверстие небольшого диаметра, а уже после этого, рассверлит его под нужный калибр. Хотя на каменистых грунтах машинное бурение будет предпочтительнее ручного.

Завершив бурение, приступают к обустройству опалубки под опорные элементы. Этот процесс можно выполнить с помощью обсадных труб или рулона рубероида. Труба вводится в тело скважины сразу же, а из листа рубероида сворачивают цилиндр (по сути, туже трубу), укрепляя его проволокой, после чего эту конструкцию вводят в скважину.

Следующий этап – подсыпка дренажного слоя – подушки фундамента, выполняется путем введения в каждую скважину песчаной подсыпки. Причем подушка для буронабивного фундамента должна быть, как минимум, 30-сантиметровой.  А слой песка на дне скважины должен быть сильно утрамбован.

После подсыпки подушки можно заняться армированием скважин. Для этого в тело опалубки вводят четыре вертикальных прута с горизонтальной перевязкой, расположенной с шагом 250-300 миллиметров.  Верхняя часть армирующего каркаса по высоте равна глубине ростверка. Заливку опорной части выполняют только после заливки ростверка.

Подготовка  ростверка буронабивного основания

Процесс сооружения цокольной части основание начинается с обустройства дна опалубки ростверка. Этот элемент можно оформить либо в виде песчаной, гидроизолированной подушки, заполняющей весь периметр основания, либо в виде щитов, уложенных на лаги.

Первый вариант обустраивается при строительстве низкого ростверка, отстоящего от нулевого уровня на расстоянии 20-40 сантиметров. Этот промежуток заполняется утрамбованным песком, поверх которого расстилают слой гидроизоляции.

Второй вариант обустраивается при строительстве высокого ростверка (от 50 сантиметров и выше). В этом случае щиты из металла или деревянных панелей монтируются на систему подпорок, готовую принять на себя вес бетонной заливки.

После завершения строительства дна формируют борта опалубки ростверка. Для этих целей используют съемную опалубку или изготовленный из досок каркас. Борта выстраивают вдоль линии балок (каркасный ростверк) или по периметру (монолитный ростверк). Далее, во внутреннюю часть опалубки монтируют армирующий каркас будущего ростверка, состоящий из горизонтальных прутьев, связанных с вертикальными штырями армирующего каркаса опор.

Заливка буронабивного основания

Финальным этапом процесса строительства фундамента на буронабивных опорах является заливка опалубки опор и ростверка. Этот процесс предполагает непрерывное выполнение. То есть, весь объем бетона должен быть доставлен на стройку заранее.

Заливка фундамента бетоном марки М 200 начинается с нижней части основания. Раствор подается по трубам в скважины свай, слоями по 30-40 сантиметров. После заливки слой раствора штыкуют или прессуют. Закончив заливать сваи, можно переключиться на заполнение опалубки ростверка.

В опалубку цокольной части раствор подают по желобам, заполняя ростверк на те же 30-40 сантиметров и тщательно штыкуя слои. После завершения заливки монолитную конструкцию укрывают пленкой и оставляют в покое на две-три недели, тревожа лишь для смачивания верхнего слоя фундамента.

Спустя две недели можно демонтировать опалубку ростверка и приступить к дальнейшему строительству дома. За это время прочность фундамента превысит 70-75 процентов от расчетного значения.

Ну а в полную силу фундамент войдет спустя несколько месяцев после заливки, когда завершится процесс образования и твердения цементного камня.

Виброизолированные фундаменты турбоагрегатов — Энергетика и промышленность России — № 10 (14) октябрь 2001 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 10 (14) октябрь 2001 года

В настоящее время по требованию заказчика многие фундаменты турбоагрегатов как тепловых, так и атомных станций проектируются виброизолированными.

При этом верхнее строение фундамента представляет собой балочный ростверк, опирающийся через виброизоляторы на балки и колонны каркаса здания.

Виброизолятор — это конструкция, состоящая из стальных цилиндрических пружин, установленных между двумя сварными металлическими корпусами. Несущая способность виброизоляторов определяется количеством пружин и составляет, в зависимости от типа, от 48 kN до 1300 kN.

Виброизоляторы изготавливает фирма «GERB» (Германия).

Схема виброизолированного фундамента, которая уже более 30 лет использовалась в странах Западной Европы, в последнее десятилетие всё шире применяется при проектировании фундаментов турбоагрегатов в России.

Фундамент с упругим опиранием — качественно новый тип строительной конструкции.

Установка пружин под верхним балочным ростверком позволяет, при рабочей скорости агрегатов 25 и 50 Гц, обеспечить очень низкий уровень собственных частот системы фундамент-турбоагрегат в диапазоне 5 — 7 Гц,

Применение виброизоляции позволяет решить следующие задачи:

1. Достичь низкого уровня вибрации турбоагрегата.

При нормальной эксплуатации турбоагрегата с обычным дисбалансом роторов амплитуды колебаний подшипников находятся в диапазоне 3-10 мк, так как система турбоагрегат-фундамент отстроена от резонанса.

С таким уровнем эксплуатируются турбины АООТ ЛМЗ мощностью 140-250 МВт на Северо-Западной ТЭЦ Санкт-Петербурга, ТЭС «Топпила» и ТЭС «Альхольма» в Финляндии.

2. Осуществить передачу на строительные конструкции ниже виброизоляторов фактически только статических нагрузок, так как вибрации от турбоагрегата пружины гасят.

Это обстоятельство позволяет скомпоновать здание турбины как пространственную многопролетную конструкцию. При этом колонны наружного каркаса объединены с колоннами, балками и перекрытиями площадок обслуживания в единую конструкцию, на которую через виброизоляторы опирается верхнее строение фундамента турбоагрегата.
Все конструкции здания турбины располагаются на единой монолитной плите, что создает оптимальные условия для восприятия сейсмики и освобождает дополнительное пространство для компоновки технологического оборудования.

Так решены здания турбин Тяньваньской АЭС в Китае с блоками 1000 МВт, Северо-Западной ТЭЦ «Ленэнерго», ТЭС «Топпила» и ТЭС «Альхольма» в Финляндии.

3. В связи с отсутствием динамического воздействия на фундаменты вести строительство станции на вибронеустойчивых грунтах.

На Южной ТЭЦ «Ленэнерго» газовая турбина фирмы АВВ установлена в котельном отделении непосредственно рядом с котлом. Так как в основании залегают вибронеустойчивые тиксотропные супеси и пылеватые обводненные пески, фундамент котла и каркас здания опираются на сваи длиной 12 м. Опирание фундаментной плиты под газовую турбину принято через виброизоляторы непосредственно на силовую плиту толщиной 600 мм. Это решение позволило исключить дорогостоящие работы по фундированию основания.

4. Устанавливать турбоагрегат большей мощности.

При реконструкции Саранской ТЭЦ-2 турбоагрегат ВПТ-25-Т-25 заменён на турбоагрегат ПТ-65/75-90/13 + ТПФ-60-2У3ю. Установка агрегата в 2,6 раза большей мошности оказалась возможной благодаря применению виброизоляторов фирмы «GERB».

Применение виброизоляторов позволило:

Сохранить колонны и нижнюю плиту существующего фундамента

Достроить нижнюю плиту и две дополнительные колонны, в связи с установкой более длинного турбоагрегата.

Выполнить верхнюю плиту фундамента в новых габаритах под турбоагрегат ПТ-65.

Блок сдан в эксплуатацию в 1998 г.
5. Проводить корректировку положения турбоагрегата.

В период пусконаладочных работ на блоке № 1 Северо-Западной ТЭЦ «Ленэнерго» была выполнена корректировка высотного положения системы турбоагрегат-фундамент от накопившейся за три года простоя смонтированного агрегата деформаций. Было откорректировано прилегание ЦНД по периметру на закладных плитах и центровка турбоагрегата, что обеспечило пуск блока в декабре 2000 г.

Применение виброизоляторов при реконструкции фундаментов турбоагрегатов на действующих электростанциях позволяет:

— Значительно сократить затраты и сроки изготовления фундамента за счёт максимального использования конструкций существующего фундамента,

— Применить для установки турбину большей мощности, что является, по нашему мнению, оптимальным решением в сложных экономических условиях России.

Разработку проектов виброизолированных фундаментов выполняет Санкт-Петербургский институт «Атомэнергопроект» . Тел/факс: (812)277-09-44.

Поставку и монтаж виброизоляторов выполняет ЗАО «ГЕРБ». Тел/факс: (812) 118-63-51.

Делаем свайный фундамент с ростверком | Довольные Метры

Свайный фундамент с ростверком применяется довольно часто тогда, когда возведение здания происходит на непрочном грунте, который, например, не пригоден для малозаглубленного фундамента.

Свайный фундамент применяют уже очень давно, что особенно актуально в местах, которые подвержены затоплениям.

Столбчатый фундамент имеет огромное число преимуществ, и в рядах профессиональных строителей считается самым надежным.

При сравнении свайного и столбчатого фундаментов, устройство первого гораздо легче и его стоимость ниже.

Такой фундамент обычно имеет расчет под облегченные варианты зданий, деревянные и пеноблочные.

Ростверк представляет собой балки или плиточные перекрытия, служащие для объединения свай и несущих конструкций друг с другом.

Балочный фундамент с монолитным ростверком, состоящий из бетона, который армируется в опалубку, это по сути такой же ленточный фундамент, но стоящий над землей, он заслуженно называется одним из самых долгосрочных.

Балочный фундамент выполняется при помощи высокого, повышенного и заниженного ростверка. Чаще всего применяют высокий ростверк, он находится на расстоянии около 15-ти сантиметров над землей.

Такая высота помогает избежать воздействия грунта, и выворачивания свай. Ширина между землей и фундаментом обязательно утепляется.

Повышенный ростверк устанавливается прямо на землю, исключая зазорное пространство, но для исключения воздействия на него грунта, под ним снимают слой земли на 10–15 сантиметров.

Ростверк покрывает своим основанием эту яму. Заниженный ростверк устанавливают ниже уровня почвы на пару сантиметров.

Основной расчет ростверка — это объединить все сваи в одно целое, а также распределить давление по сваям, фото-проект установки свайного фундамента с ростверком можете посмотреть ниже.

Какие сваи применяются для ростверка?

Сваи применяются из железобетона, бетона, металла и очень редко из дерева.

Балочный фундамент с ростверком монтируют с набивными сваями, их очень удобно устанавливать в заранее выбуренные отверстия, технология и схема показана на фото.

Также фундамент монтируют и с инъекционными сваями – они устанавливаются в небольшие отверстия до 10-ти сантиметров с одним армирующим прутом.

Конструкция фундамента

Но бывают и альтернативные варианты, например, забивные сваи, они забиваются в почву при помощи специальной строительной техники.

Также в расчет можно взять и свайно-винтовой фундамент, он применяется тоже очень часто.

Монолитный ростверк

Чтобы сделать фундамент с монолитным ростверком, нужно сначала провести подготовительные работы и создать проект, в котором будет обозначена полная технология и схема будущего фундамента.

Верхушки свай срубаются так, чтобы осталась нужная высота, далее сооружается опалубка, по ней производится заливка монолитного ростверка, раствор необходимо укладывать ровными слоями по горизонтали по всей поверхности монолитного ростверка.

Сделать такой фундамент своими руками довольно просто, он имеет небольшую стоимость и для его возведения хватит и базовых строительных навыков, это сильно отличает свайный фундамент с монолитным ростверком от других оснований для дома.

Этапы работы происходят в таком порядке:

для начала нужно составить чертежи, на которых нужно спланировать проект будущего фундамента в разрезе, обозначить все размеры. Пример того, как производится расчет, предоставлен для обзора на фото ниже;

затем нужно пробурить отверстия для железобетонных свай;

монтируется опалубка из деревянных брусков;

для монолитного ростверка нужно выкопать желоб под заливку;

далее, бетонным раствором будет производиться заливка ростверка и свай;

готовая конструкция выстаивается в течение месяца для полного засыхания и упрочнения.

Если вы планируете строительство кирпичного дома на глинистой, болотистой или пучинистой почве, то самым надежным вариантом будет установка свайного фундамента с ростверком.

Плюсы использования набивных свай:

при работе не создаются шумы, что может обеспечить круглосуточную работу вблизи жилых зданий;

при введении свай в почву не создаются вибрации, способные повредить плотно стоящие рядом постройки;

свайный фундамент позволяет монтировать его на различную глубину при строительстве на устойчивой почве;

значительное сокращение времени строительства кирпичного дома;

небольшая стоимость материалов.

Минусы:

металлические конструкции подвержены образованию очагов ржавчины;

такой тип фундамента непригоден для установки на скальных породах грунта.

Для строительства подвального помещения нужно проводить дополнительные финансово-затратные работы.

Свайный фундамент для кирпичного дома отлично подходит в том случае если, например, грунт не может вынести высокую нагрузку.

Сваи одинаково распределяют массу будущей конструкции по лежащим глубже наиболее плотным слоям грунта.

Сверху соединение свай в единую конструкцию производится посредством ростверка, который берет на себя первичную нагрузку стен здания.

Строительство этого типа фундамента сильно сокращается расход строительных материалов, что снижает стоимость и физические затраты на работы.

Но без специальной строительной буровой установки тут не обойтись. Для кирпичного дома лучшим считается железобетонный буронабивной фундамент.

Под несущими стенами конструкции рекомендуется сделать бетонную ленту, под которой нужно равномерно распределить вертикальные столбы.

В такой конструкции вес будет распределяться равномерно: сначала на ростверк, а потом на свайные столбы.

Если вы сделаете правильную фундаментальную конструкцию для кирпичного дома, то он сможет выдержать и дополнительную нагрузку в виде возможных надстроек.

Свайный фундамент своими руками

Чтобы произвести установку свайного фундамента с ростверком, нужно для начала ознакомиться с этапами процесса работы:

для начала нужно произвести геолого-изыскательные работы;

произвести необходимые чертежи и расчет будущей конструкции;

установить сваи;

уложить ростверк;

обустроить цоколь здания.

Первым делом определяется тип почвы, особенно залегающего на глубине устанавливаемых свай.

От результатов будут зависеть такие показатели, как: длина свай, расстояние между ними и несущие способности.

Также определяются нагрузки, которые будут производиться весом постройки на свайный фундамент и почву.

Устройство и армирование фундамента и расчет ростверка будет отталкиваться именно от этих значений.

Общий вес рассчитывается исходя из:

веса всей конструкции, крыши;

нагрузок снега в зимний период;

прочие нагрузки, такие как мебель, техника, жильцы.

Этапы строительства

Перед началом монтажной работы нужна схема, также важно рассчитать размеры, произвести разметку, просчитать стоимость и необходимое количество используемого материала.

После этого начинаем бурить отверстия под сваи. Диаметр шурфа должен быть немного больше, чем диаметр устанавливаемой сваи.

Если устройство и армирование фундамента вы проводите своими руками, то обычно для бурения используют ручной земляной бур.

Глубина отверстия, сделанная таким буром, максимально составляет 5 метров, ширина около 30-ти сантиметров.

Если же, например, глубина запланирована большая, то используют моторизированную буровую установку.

Заливка свай своими руками производится таким методом: кусками рубероида оборачиваются сваи и вставляются внутрь отверстия, после этого необходимо установить металлические прутья, вполне хватит трех штук диаметром около 8 миллиметров, они скрепляются между собой.

Высота прутьев арматуры должна не доходить до ростверка на пару сантиметров. Изнутри отверстия заливаются бетонным раствором. Марка бетона используемая для заливки обычно М-200, М-250, М-300.

Обустройство ростверка может быть монолитным или сборным.

Тут также имеется ряд замечаний:

строительство своими руками ростверка не должно пересекаться с трубопроводами;

сваи не должны иметь отклонений от оси по вертикали на 5 сантиметров и более;

все зазоры и трещины должны быть заизолированы при помощи раствора бетона;

армирование ростверка также является обязательным этапом.

Перед тем как устанавливать стены своими руками, нужно уровнем проверить поверхность ростверка.

Если есть отклонения, то поверх производится стяжка бетонным слоем. После того как устройство и армирование конструкции завершено, необходимо произвести отделку цокольной части.

Утепление свайного фундамента

Несмотря на то, что современный рынок строительных товаров предлагает огромный выбор материалов, функция которых — это утепление фундаментов, люди по-прежнему делают выбор в пользу проверенных временем средств.

В частности, из-за невысокой стоимости и качества материалов. Пример тому — самый часто применяемый пенопласт, им с легкостью можно произвести утепление фундамента, используя клеящую основу.

Но пенопласт не подходит для утепления в условиях повышенной влажности, в таких условиях производят утепление водонепроницаемыми материалами.

У каждого материала для утепления имеется ряд своих достоинств и недостатков, так, выбирая метод которым будет проводиться утепление, нужно отталкиваться от множества факторов, начиная от цены и заканчивая долговечностью материала.

Также очень часто применяются следующие методы утепления:

засыпка керамзитом пазух балочного ростверка;

облицовка ростверка экструдированным пенополистиролом.

Утепление фундамента с монолитным ростверком производится только снаружи дома. Боковые стороны в этом случае выступают в роли цоколя.

Вот основные этапы в утеплении:

боковые стороны ростверка покрываются слоем битума, он защищает их от влаги;

блоки пенополистирола монтируют прямо к битумной массе, до того, как он застыл;

при помощи монтажной пены заделываются все зазоры между пенопанелями. Если утеплитель имеет систему сцепления типа шип-паз, это значительно ускоряет и облегчает процесс;

поверх теплоизоляционного слоя укладывают армирующую сетку, которая затем покрывается штукатурным слоем;

после завершения всех этих этапов фасад покрывают слоем гидроизолирующего раствора и окрашивают.

Если вы будете следовать всем правилам и советам, то технология строительства фундамента станет для вас несложной задачей.

Моделирование и анализ балочных мостов

Большинство автомобильных мостов представляют собой балочные конструкции с однопролетными или непрерывными пролетами, а композитные мосты имеют форму многобалочных или лестничных настилов. Определение основных эффектов различных комбинаций нагрузок часто может быть достигнуто с помощью 2-мерной аналитической модели, но для более полного анализа необходима 3-мерная модель.
В этой статье рассматриваются соответствующие методы анализа и моделирования типичных мостов из стали и композитных материалов в Великобритании.

 

Полная конечно-элементная модель

[вверху] Варианты моделирования типичного многолучевого моста

 

Типичный многобалочный мост из стального композитного материала
Овербридж Тринити на трассе A120
(Изображение любезно предоставлено Аткинсом)

Существует три варианта моделирования типичного многобалочного стального композитного моста:

Линейный луч — довольно грубый инструмент.Он не учитывает поперечное распределение, он не дает результатов для поперечного дизайна (например, плиты или распорки) и не учитывает эффекты перекоса. Его не рекомендуется использовать для детального проектирования, но это полезный инструмент для предварительного проектирования.

Использование ростверка подходит во многих ситуациях. Использование модели конечных элементов даст более подробные результаты, особенно для неоднородных балок.

Хотя анализ ростверка широко используется и по-прежнему считается наиболее подходящим для большинства мостовых настилов, признано, что программы анализа методом конечных элементов становятся все более доступными и более простыми в использовании.Кроме того, требования Еврокода для проверки бокового продольного изгиба при кручении могут сделать анализ продольного изгиба методом конечных элементов важным для проверки случая нагрузки мокрой бетонной конструкции.

 

Поперечный разрез Овербриджа Тринити

[вверх] Анализ ростков

[вверх] Анализ ростков: обзор

 

Изометрический вид ростверка, представляющего собой настил балки

Модель ростверка — это обычная форма расчетной модели для композитных настилов мостов. Его ключевые особенности:

  • Это 2D модель
  • Конструктивное поведение линейно-упругое
  • Элементы балки выложены сеткой в ​​одной плоскости, жестко соединены в узлах
  • Продольные элементы представляют собой составные секции (т. Е. Основные балки с соответствующей плитой)
  • Поперечные элементы представляют собой только плиту или составное сечение, в котором присутствуют поперечные стальные балки

[вверх] Анализ ростверка: расположение элементов

Предлагается следующее руководство по выбору планировки ростверка:

  • Сохраняйте размеры сетки примерно квадратными
  • Используйте четное количество шагов сетки
  • Шаг сетки не более пролета / 8
  • Кромки вдоль парапета для облегчения приложения нагрузки
  • Вставьте дополнительные стыки для мест стыковки (обычно предполагается, что это 25% пролета от опор)

Для двухпролетного моста, как показано выше, подходящая компоновка будет такой, как показано ниже.

 

Типовая схема ростверка для двухпролетного многобалочного стального композитного моста

[вверх] Анализ ростверка: поэтапное применение загрузки

Для моделирования реакции конструкции на диапазон постоянных и переменных воздействий потребуются как минимум три различных модели ростверка:

  • Модель «только сталь» : Собственный вес стальных балок и вес влажного бетона во время строительства применяются к модели ростверка только из стали.Продольные элементы представляют собой только стальные балки, в то время как поперечные элементы обычно не требуются (они могут быть установлены как «фиктивные» элементы, чтобы сохранить то же расположение модели, что и составные модели).
  • «Долговременная» композитная модель : Постоянные воздействия, применяемые к завершенной конструкции (в основном, наложенные постоянные нагрузки, такие как покрытие поверхности, и ограничение кривизны из-за усадки), применяются к долговременной композитной модели. Характеристики сечения продольных составных элементов и поперечных элементов, представляющих плиту, рассчитываются с использованием длительного модуля упругости бетона.Если плита находится в состоянии растяжения, могут потребоваться свойства сечения с трещинами.
  • «Краткосрочная» составная модель. : Переходные воздействия (в основном вертикальные нагрузки из-за дорожного движения) применяются к краткосрочной составной модели. Свойства сечения рассчитываются так же, как и для долгосрочной модели, но с использованием краткосрочного модуля упругости. Опять же, свойства сечения с трещинами могут потребоваться там, где плита находится в состоянии растяжения.

Обратите внимание, что BS EN 1992-1-1 [1] дает несколько иной долгосрочный модуль упругости бетона для усадочной нагрузки, поэтому теоретически должна быть четвертая модель для анализа эффектов усадки.Однако модуль существенно не отличается от «обычного» долгосрочного значения, и разумно применить удерживающие моменты усадки к долгосрочной модели для определения вторичных моментов в балках. Однако соответствующие свойства сечения для усадки следует использовать для расчета напряжений, вызванных этими эффектами.

[вверх] Анализ ростков: свойства сечения

 

Свойства трансформируемого сечения элемента составной балки ростверка

Обычно все свойства сечения в «стальных элементах» рассчитываются с использованием преобразованной площади бетонного фланца (разделить на коэффициент модульности n = E s / E c ).Следующие свойства сечения необходимы для каждого отдельного сечения:

  • Только сталь: только свойства стальной балки
  • Долговечный композит: бетонная поверхность, преобразованная в долгосрочную модульную конструкцию
  • Кратковременный композит: бетонная поверхность, преобразованная для кратковременного модульного соотношения
  • Свойства с трещинами (в областях коробления): площадь армирования принимается как эффективная только в сечении плиты.

Для свойств сечения без трещин армирование в плите может игнорироваться.

Типичный преобразованный разрез показан справа.

[вверх] Степень трещинности

Если соотношение длин соседних пролетов составляет не менее 0,6, поправка на растрескивание плиты в зонах коробления может быть сделана путем использования свойств сечения с трещинами для 15% пролета с каждой стороны промежуточных опор, как показано ниже. Это предусмотрено BS EN 1994-2 [2] , пункт 5.4.2.3.

 

Степень трещиностойкости элементов балки

[вверху] Задержка сдвига в бетонных полках

Эффективная ширина бетонных полок основана на ширине плиты, равной L e /8 за пределами внешней стойки, по обе стороны от балки, где L e — это расстояние между точками обратного прогиба.Это определение дано в BS EN 1994-2 [2] , пункт 5.4.1.2, где приведены приблизительные значения L и . Обратите внимание, что запаздывание сдвига необходимо учитывать как при ULS, так и при SLS (одинаковая эффективная ширина используется для обоих предельных состояний).

[вверх] Анализ ростверка: приложение нагрузок

Остаточные воздействия (собственный вес) распределяются между продольными элементами с помощью простой статики. Графическое изображение типичных постоянных нагрузок, приложенных к модели ростверка, показано ниже (слева).

Загрузка трафика обычно определяется программами «автозагрузки», которые являются частью большинства аналитических программ. Эти программы используют поверхности влияния для определения степени равномерно распределенных нагрузок и положения тандемных систем и специальных транспортных средств. Типичная поверхность влияния для места изгиба в середине пролета показана ниже (справа).

Пользователь решает, какие положения на модели наиболее важны для проектирования (например, промежуточные участки, стыки и положения опор), и требует, чтобы для этих положений были созданы поверхности влияния; затем автопогрузчик определяет позиции, в которых
применяется для наиболее обременительного эффекта.

  • Графическое изображение постоянных нагрузок, приложенных к модели

  • Типовая поверхность воздействия изгибающего момента в середине пролета двухпролетного четырехбалочного моста

[вверх] Анализ ростков: выход

Основная цель любого глобального анализа мостов — получение результатов, которые затем можно использовать при анализе и проектировании сечений. Обычно на выходе будут изгибающие моменты, поперечные силы и крутящие моменты (если они значительны) в главных балках.Прогибы также потребуются для расчетов из преамбула. Результат, вероятно, будет либо графическим, либо табличным, оба полезны. Графический вывод позволяет быстро установить на глаз пиковые моменты и сдвиги, а также позволяет проектировщику визуально проверить, ведет ли модель себя так, как ожидалось. Табличный вывод может быть полезен для постобработки в виде электронной таблицы и одновременного чтения сопутствующих эффектов нагрузки. Однако проектировщику следует принимать решения о том, где находятся критические места на конструкции, чтобы избежать чрезмерного количества выходных данных и постобработки.

  • Типовое графическое представление вывода изгибающего момента

  • Типичный результат анализа влияния нагрузки на ростверк

[вверх] Анализ ростков: прочие соображения

 

Графическое изображение изгибающих моментов в элементах плиты в ростверке модели

Также необходимо учитывать следующее:

  • Глобальные эффекты для расчета поперечных перекрытий : возьмите эффекты нагрузки на поперечные элементы из модели ростверка и добавьте к эффектам из локального анализа (например.грамм. Диаграммы Пучера. См. SCI 356). Любые нагрузки, приложенные к ростверку, следует прикладывать к швам только для этой цели, чтобы избежать неточного двойного учета местных эффектов.
  • Распорка : Связь обычно моделируется с помощью гибкого на сдвиг элемента (консервативно для использования элемента, который не учитывает гибкость при сдвиге) с эквивалентными свойствами, рассчитанными на основе модели плоской рамы. Модель плоской рамы также может использоваться для расчета распорок с использованием отклонений от модели ростверка, приложенных к модели плоской рамы, и при необходимости удерживающих сил.
  • Опоры : Все опоры обеспечивают только вертикальное ограничение в 2D ростверке. Влияние невертикальных нагрузок необходимо оценивать вручную или с помощью альтернативной модели.
  • Ручные проверки : Ручные проверки должны проводиться для проверки модели, например, проверка изгибающих моментов при равномерной нагрузке и проверка опорных реакций
  • Комбинированное программное обеспечение для глобального анализа и проектирования сечений : Некоторое программное обеспечение предлагает комбинированный глобальный анализ и возможность проектирования сечений.Проектировщики должны убедиться, что они понимают теорию, лежащую в основе проектирования секций балки, и проводить проверки на выходе.
 

Модель плоской рамы для оценки жесткости (для элемента модели ростверка) и для определения эффектов от смещений из выходного

[вверх] Анализ ростков: варианты

[вверх] Мосты косые

Многие мосты имеют перекос в плане, и модель ростверка позволяет приспособить это расположение одним из нескольких способов.Рассмотрим типичный план косого моста, показанный ниже.

 

Для малых углов перекоса сетку можно выровнять с перекосом, как показано ниже.

 

перекос сетки (перекос не более 20 °)

Для больших углов перекоса поведение элементов перекоса становится неточным, и лучше вернуться к ортогональной сетке. На концах необходимо компенсировать перекос.

 

Ортогональная сетка для большего перекоса. (наклон более 20 °)

[вверх] Мосты изогнутые
 

Типовой изогнутый композитный мост

Это относительно обычное явление для мостов на развязках с разнесенными уровнями и в других местах, где пространство ограничено, чтобы иметь значительную кривизну в плане.

В таких ситуациях можно использовать изогнутые ростверки, хотя при выборе компоновки и рассмотрении результатов анализа необходимо соблюдать осторожность, поскольку крутильные эффекты в плите нелегко отделить от эффектов коробления в стальных балках. Кроме того, после анализа ростверка необходимо будет учесть влияние горизонтальных «радиальных» сил в стальных фланцах.

 

Модель изогнутого ростверка для 4-пролетного моста

[вверх] Балки переменной глубины

Балки переменной глубины, такие как показанные ниже, можно легко разместить в модели ростверка путем изменения свойств сечения по длине продольных элементов.

 

Балки переменной глубины в двухпролетном мосту
(Изображение любезно предоставлено Аткинсом)

[вверху] Лестничные настилы
 

Лестничный мостик (этап строительства, со спусковой головкой)

Лестничные настилы, подобные показанному справа, можно смоделировать с помощью ростверков.

В модели ростверка для лестничной площадки:

  • Основные лонжероны представляют собой сплошное составное сечение
  • Промежуточные лонжероны представляют собой только плиту
  • Поперечные элементы обычно представляют собой составное сечение, включая поперечные балки. Иногда могут быть включены только промежуточные элементы плиты между композитными поперечными элементами.

Вероятно, потребуется 3D-модель для моделирования взаимодействия между поперечными балками и главными балками, в частности, для определения жесткости U-образной рамы и воздействия на поперечные балки из-за местного применения специальных транспортных средств.

 
 

Трехмерная модель лестничного настила для взаимодействия поперечных балок и главных балок

[вверх] Мосты интегральные

Для интегрального моста можно использовать двухмерный ростверк с поворотными пружинными опорами на встроенных опорах в сочетании с двухмерной плоской моделью рамы для температурных воздействий.В качестве альтернативы можно использовать 3D-модель с участком ростверка для настила и вертикальными участками для примыкания и фундамента.

[вверху] Расчет критического изгиба на упругость для грузовой платформы «мокрый бетон»

 

Голые стальные балки в ожидании загрузки мокрого бетона

BS EN 1993-2 [3] не дает формулы для определения гибкости при продольном изгибе при кручении парных стальных балок с торсионными связями, когда пара балок склонна изгибаться как пара, сочувствуя друг другу, а не между ограничениями. .Это обычный сценарий для мокрой загрузки бетона. Можно рассмотреть два варианта:

  • Расчет гибкости с помощью анализа критического продольного изгиба по КЭ
  • Используйте упрощенные правила для гибкости ограничителей скручивания, взятые из BS 5400-3 [4] (они доступны в формате Еврокода в SCI P356).

Для анализа КЭ пользователю необходимо просмотреть режимы потери устойчивости, чтобы найти режим продольного изгиба при кручении — можно обнаружить, что формы продольного изгиба стенки или полки возникают раньше, чем поперечные формы продольного изгиба при кручении.

Анализ КЭ, вероятно, даст значительные преимущества по сравнению с упрощенным подходом, который обсуждается при проектировании балки.

Дальнейшие инструкции по определению сопротивления продольному изгибу балок из стальных листов в композитных мостах во время строительства (голая стальная ступень) и в эксплуатации (когда плита настила действует как верхний фланец) доступны в ED008

[вверх] Конечно-элементное моделирование

Поскольку вполне вероятно, что для проверки упругой критической потери устойчивости потребуется модель конечных элементов, можно рассмотреть возможность использования полной модели конечных элементов для всего анализа.Это также имеет то преимущество, что структурный отклик потенциально лучше моделируется. Однако есть ряд недостатков, в том числе:

 

Полная конечно-элементная модель

  • Более длительная установка
  • Больше шансов на ошибку
  • Больше времени для получения результатов
  • Для уверенного использования требуется больше практики
  • Отладка сложнее
  • Пиковые опорные моменты могут быть недооценены

Если принято решение об использовании конечно-элементной модели, могут помочь следующие рекомендации:

  • Крупная сетка, вероятно, будет достаточной
  • Держите сетку как можно более квадратной
  • Требуется более тщательное планирование
  • Толстые элементы оболочки для балок и плит, балочные элементы в других местах (например,грамм. для распорки)
  • В качестве альтернативы можно использовать балочные элементы для составных пластин стальных балок
  • Требуется дополнительная проверка
  • Необходимые анизотропные свойства в областях с трещинами

[вверх] Выводы

Ростверк — это обычно используемая модель мостовых настилов, и она относительно проста в использовании. Тем не менее, модель конечных элементов, скорее всего, по-прежнему потребуется для анализа упругого критического продольного изгиба стальных балок, поддерживающих влажную нагрузку бетона.Следовательно, модель конечных элементов может рассматриваться для всего анализа, что также может иметь возможное преимущество в виде лучшего моделирования реакции конструкции. Однако у этого подхода есть некоторые недостатки, поэтому многие проектировщики используют ростверк для основного анализа и используют модель конечных элементов только там, где это абсолютно необходимо.

[вверх] Список литературы

  1. ↑ BS EN 1992-1-1: 2004 + A1: 2014 Еврокод 2. Проектирование бетонных конструкций. Общие правила и правила для зданий, BSI
  2. 2.0 2,1 BS EN 1994-2: 2005, Еврокод 4. Проектирование композитных стальных и бетонных конструкций. Общие правила и правила для мостов, BSI
  3. ↑ BS EN 1993-2: 2006, Еврокод 3. Проектирование стальных конструкций. Стальные мосты, BSI
  4. ↑ BS 5400-3: 2000
    Стальные, бетонные и композитные мосты. Свод правил проектирования стальных мостов. BSI

[вверх] Ресурсы

[вверху] См. Также

[вверх] Внешние ссылки

Моделирование и анализ балочных мостов

Большинство автомобильных мостов представляют собой балочные конструкции с однопролетными или непрерывными пролетами, а композитные мосты имеют форму многобалочных или лестничных настилов.Определение основных эффектов различных комбинаций нагрузок часто может быть достигнуто с помощью 2-мерной аналитической модели, но для более полного анализа необходима 3-мерная модель.
В этой статье рассматриваются соответствующие методы анализа и моделирования типичных мостов из стали и композитных материалов в Великобритании.

 

Полная конечно-элементная модель

[вверху] Варианты моделирования типичного многолучевого моста

 

Типичный многобалочный мост из стального композитного материала
Овербридж Тринити на трассе A120
(Изображение любезно предоставлено Аткинсом)

Существует три варианта моделирования типичного многобалочного стального композитного моста:

Линейный луч — довольно грубый инструмент. Он не учитывает поперечное распределение, он не дает результатов для поперечного дизайна (например, плиты или распорки) и не учитывает эффекты перекоса. Его не рекомендуется использовать для детального проектирования, но это полезный инструмент для предварительного проектирования.

Использование ростверка подходит во многих ситуациях. Использование модели конечных элементов даст более подробные результаты, особенно для неоднородных балок.

Хотя анализ ростверка широко используется и по-прежнему считается наиболее подходящим для большинства мостовых настилов, признано, что программы анализа методом конечных элементов становятся все более доступными и более простыми в использовании.Кроме того, требования Еврокода для проверки бокового продольного изгиба при кручении могут сделать анализ продольного изгиба методом конечных элементов важным для проверки случая нагрузки мокрой бетонной конструкции.

 

Поперечный разрез Овербриджа Тринити

[вверх] Анализ ростков

[вверх] Анализ ростков: обзор

 

Изометрический вид ростверка, представляющего собой настил балки

Модель ростверка — это обычная форма расчетной модели для композитных настилов мостов.Его ключевые особенности:

  • Это 2D модель
  • Конструктивное поведение линейно-упругое
  • Элементы балки выложены сеткой в ​​одной плоскости, жестко соединены в узлах
  • Продольные элементы представляют собой составные секции (т. Е. Основные балки с соответствующей плитой)
  • Поперечные элементы представляют собой только плиту или составное сечение, в котором присутствуют поперечные стальные балки

[вверх] Анализ ростверка: расположение элементов

Предлагается следующее руководство по выбору планировки ростверка:

  • Сохраняйте размеры сетки примерно квадратными
  • Используйте четное количество шагов сетки
  • Шаг сетки не более пролета / 8
  • Кромки вдоль парапета для облегчения приложения нагрузки
  • Вставьте дополнительные стыки для мест стыковки (обычно предполагается, что это 25% пролета от опор)

Для двухпролетного моста, как показано выше, подходящая компоновка будет такой, как показано ниже.

 

Типовая схема ростверка для двухпролетного многобалочного стального композитного моста

[вверх] Анализ ростверка: поэтапное применение загрузки

Для моделирования реакции конструкции на диапазон постоянных и переменных воздействий потребуются как минимум три различных модели ростверка:

  • Модель «только сталь» : Собственный вес стальных балок и вес влажного бетона во время строительства применяются к модели ростверка только из стали.Продольные элементы представляют собой только стальные балки, в то время как поперечные элементы обычно не требуются (они могут быть установлены как «фиктивные» элементы, чтобы сохранить то же расположение модели, что и составные модели).
  • «Долговременная» композитная модель : Постоянные воздействия, применяемые к завершенной конструкции (в основном, наложенные постоянные нагрузки, такие как покрытие поверхности, и ограничение кривизны из-за усадки), применяются к долговременной композитной модели. Характеристики сечения продольных составных элементов и поперечных элементов, представляющих плиту, рассчитываются с использованием длительного модуля упругости бетона.Если плита находится в состоянии растяжения, могут потребоваться свойства сечения с трещинами.
  • «Краткосрочная» составная модель. : Переходные воздействия (в основном вертикальные нагрузки из-за дорожного движения) применяются к краткосрочной составной модели. Свойства сечения рассчитываются так же, как и для долгосрочной модели, но с использованием краткосрочного модуля упругости. Опять же, свойства сечения с трещинами могут потребоваться там, где плита находится в состоянии растяжения.

Обратите внимание, что BS EN 1992-1-1 [1] дает несколько иной долгосрочный модуль упругости бетона для усадочной нагрузки, поэтому теоретически должна быть четвертая модель для анализа эффектов усадки.Однако модуль существенно не отличается от «обычного» долгосрочного значения, и разумно применить удерживающие моменты усадки к долгосрочной модели для определения вторичных моментов в балках. Однако соответствующие свойства сечения для усадки следует использовать для расчета напряжений, вызванных этими эффектами.

[вверх] Анализ ростков: свойства сечения

 

Свойства трансформируемого сечения элемента составной балки ростверка

Обычно все свойства сечения в «стальных элементах» рассчитываются с использованием преобразованной площади бетонного фланца (разделить на коэффициент модульности n = E s / E c ).Следующие свойства сечения необходимы для каждого отдельного сечения:

  • Только сталь: только свойства стальной балки
  • Долговечный композит: бетонная поверхность, преобразованная в долгосрочную модульную конструкцию
  • Кратковременный композит: бетонная поверхность, преобразованная для кратковременного модульного соотношения
  • Свойства с трещинами (в областях коробления): площадь армирования принимается как эффективная только в сечении плиты.

Для свойств сечения без трещин армирование в плите может игнорироваться.

Типичный преобразованный разрез показан справа.

[вверх] Степень трещинности

Если соотношение длин соседних пролетов составляет не менее 0,6, поправка на растрескивание плиты в зонах коробления может быть сделана путем использования свойств сечения с трещинами для 15% пролета с каждой стороны промежуточных опор, как показано ниже. Это предусмотрено BS EN 1994-2 [2] , пункт 5.4.2.3.

 

Степень трещиностойкости элементов балки

[вверху] Задержка сдвига в бетонных полках

Эффективная ширина бетонных полок основана на ширине плиты, равной L e /8 за пределами внешней стойки, по обе стороны от балки, где L e — это расстояние между точками обратного прогиба.Это определение дано в BS EN 1994-2 [2] , пункт 5. 4.1.2, где приведены приблизительные значения L и . Обратите внимание, что запаздывание сдвига необходимо учитывать как при ULS, так и при SLS (одинаковая эффективная ширина используется для обоих предельных состояний).

[вверх] Анализ ростверка: приложение нагрузок

Остаточные воздействия (собственный вес) распределяются между продольными элементами с помощью простой статики. Графическое изображение типичных постоянных нагрузок, приложенных к модели ростверка, показано ниже (слева).

Загрузка трафика обычно определяется программами «автозагрузки», которые являются частью большинства аналитических программ. Эти программы используют поверхности влияния для определения степени равномерно распределенных нагрузок и положения тандемных систем и специальных транспортных средств. Типичная поверхность влияния для места изгиба в середине пролета показана ниже (справа).

Пользователь решает, какие положения на модели наиболее важны для проектирования (например, промежуточные участки, стыки и положения опор), и требует, чтобы для этих положений были созданы поверхности влияния; затем автопогрузчик определяет позиции, в которых
применяется для наиболее обременительного эффекта.

  • Графическое изображение постоянных нагрузок, приложенных к модели

  • Типовая поверхность воздействия изгибающего момента в середине пролета двухпролетного четырехбалочного моста

[вверх] Анализ ростков: выход

Основная цель любого глобального анализа мостов — получение результатов, которые затем можно использовать при анализе и проектировании сечений. Обычно на выходе будут изгибающие моменты, поперечные силы и крутящие моменты (если они значительны) в главных балках.Прогибы также потребуются для расчетов из преамбула. Результат, вероятно, будет либо графическим, либо табличным, оба полезны. Графический вывод позволяет быстро установить на глаз пиковые моменты и сдвиги, а также позволяет проектировщику визуально проверить, ведет ли модель себя так, как ожидалось. Табличный вывод может быть полезен для постобработки в виде электронной таблицы и одновременного чтения сопутствующих эффектов нагрузки. Однако проектировщику следует принимать решения о том, где находятся критические места на конструкции, чтобы избежать чрезмерного количества выходных данных и постобработки.

  • Типовое графическое представление вывода изгибающего момента

  • Типичный результат анализа влияния нагрузки на ростверк

[вверх] Анализ ростков: прочие соображения

 

Графическое изображение изгибающих моментов в элементах плиты в ростверке модели

Также необходимо учитывать следующее:

  • Глобальные эффекты для расчета поперечных перекрытий : возьмите эффекты нагрузки на поперечные элементы из модели ростверка и добавьте к эффектам из локального анализа (например.грамм. Диаграммы Пучера. См. SCI 356). Любые нагрузки, приложенные к ростверку, следует прикладывать к швам только для этой цели, чтобы избежать неточного двойного учета местных эффектов.
  • Распорка : Связь обычно моделируется с помощью гибкого на сдвиг элемента (консервативно для использования элемента, который не учитывает гибкость при сдвиге) с эквивалентными свойствами, рассчитанными на основе модели плоской рамы. Модель плоской рамы также может использоваться для расчета распорок с использованием отклонений от модели ростверка, приложенных к модели плоской рамы, и при необходимости удерживающих сил.
  • Опоры : Все опоры обеспечивают только вертикальное ограничение в 2D ростверке. Влияние невертикальных нагрузок необходимо оценивать вручную или с помощью альтернативной модели.
  • Ручные проверки : Ручные проверки должны проводиться для проверки модели, например, проверка изгибающих моментов при равномерной нагрузке и проверка опорных реакций
  • Комбинированное программное обеспечение для глобального анализа и проектирования сечений : Некоторое программное обеспечение предлагает комбинированный глобальный анализ и возможность проектирования сечений. Проектировщики должны убедиться, что они понимают теорию, лежащую в основе проектирования секций балки, и проводить проверки на выходе.
 

Модель плоской рамы для оценки жесткости (для элемента модели ростверка) и для определения эффектов от смещений из выходного

[вверх] Анализ ростков: варианты

[вверх] Мосты косые

Многие мосты имеют перекос в плане, и модель ростверка позволяет приспособить это расположение одним из нескольких способов.Рассмотрим типичный план косого моста, показанный ниже.

 

Для малых углов перекоса сетку можно выровнять с перекосом, как показано ниже.

 

перекос сетки (перекос не более 20 °)

Для больших углов перекоса поведение элементов перекоса становится неточным, и лучше вернуться к ортогональной сетке.На концах необходимо компенсировать перекос.

 

Ортогональная сетка для большего перекоса. (наклон более 20 °)

[вверх] Мосты изогнутые
 

Типовой изогнутый композитный мост

Это относительно обычное явление для мостов на развязках с разнесенными уровнями и в других местах, где пространство ограничено, чтобы иметь значительную кривизну в плане.

В таких ситуациях можно использовать изогнутые ростверки, хотя при выборе компоновки и рассмотрении результатов анализа необходимо соблюдать осторожность, поскольку крутильные эффекты в плите нелегко отделить от эффектов коробления в стальных балках. Кроме того, после анализа ростверка необходимо будет учесть влияние горизонтальных «радиальных» сил в стальных фланцах.

 

Модель изогнутого ростверка для 4-пролетного моста

[вверх] Балки переменной глубины

Балки переменной глубины, такие как показанные ниже, можно легко разместить в модели ростверка путем изменения свойств сечения по длине продольных элементов.

 

Балки переменной глубины в двухпролетном мосту
(Изображение любезно предоставлено Аткинсом)

[вверху] Лестничные настилы
 

Лестничный мостик (этап строительства, со спусковой головкой)

Лестничные настилы, подобные показанному справа, можно смоделировать с помощью ростверков.

В модели ростверка для лестничной площадки:

  • Основные лонжероны представляют собой сплошное составное сечение
  • Промежуточные лонжероны представляют собой только плиту
  • Поперечные элементы обычно представляют собой составное сечение, включая поперечные балки.Иногда могут быть включены только промежуточные элементы плиты между композитными поперечными элементами.

Вероятно, потребуется 3D-модель для моделирования взаимодействия между поперечными балками и главными балками, в частности, для определения жесткости U-образной рамы и воздействия на поперечные балки из-за местного применения специальных транспортных средств.

 
 

Трехмерная модель лестничного настила для взаимодействия поперечных балок и главных балок

[вверх] Мосты интегральные

Для интегрального моста можно использовать двухмерный ростверк с поворотными пружинными опорами на встроенных опорах в сочетании с двухмерной плоской моделью рамы для температурных воздействий.В качестве альтернативы можно использовать 3D-модель с участком ростверка для настила и вертикальными участками для примыкания и фундамента.

[вверху] Расчет критического изгиба на упругость для грузовой платформы «мокрый бетон»

 

Голые стальные балки в ожидании загрузки мокрого бетона

BS EN 1993-2 [3] не дает формулы для определения гибкости при продольном изгибе при кручении парных стальных балок с торсионными связями, когда пара балок склонна изгибаться как пара, сочувствуя друг другу, а не между ограничениями. .Это обычный сценарий для мокрой загрузки бетона. Можно рассмотреть два варианта:

  • Расчет гибкости с помощью анализа критического продольного изгиба по КЭ
  • Используйте упрощенные правила для гибкости ограничителей скручивания, взятые из BS 5400-3 [4] (они доступны в формате Еврокода в SCI P356).

Для анализа КЭ пользователю необходимо просмотреть режимы потери устойчивости, чтобы найти режим продольного изгиба при кручении — можно обнаружить, что формы продольного изгиба стенки или полки возникают раньше, чем поперечные формы продольного изгиба при кручении.

Анализ КЭ, вероятно, даст значительные преимущества по сравнению с упрощенным подходом, который обсуждается при проектировании балки.

Дальнейшие инструкции по определению сопротивления продольному изгибу балок из стальных листов в композитных мостах во время строительства (голая стальная ступень) и в эксплуатации (когда плита настила действует как верхний фланец) доступны в ED008

[вверх] Конечно-элементное моделирование

Поскольку вполне вероятно, что для проверки упругой критической потери устойчивости потребуется модель конечных элементов, можно рассмотреть возможность использования полной модели конечных элементов для всего анализа.Это также имеет то преимущество, что структурный отклик потенциально лучше моделируется. Однако есть ряд недостатков, в том числе:

 

Полная конечно-элементная модель

  • Более длительная установка
  • Больше шансов на ошибку
  • Больше времени для получения результатов
  • Для уверенного использования требуется больше практики
  • Отладка сложнее
  • Пиковые опорные моменты могут быть недооценены

Если принято решение об использовании конечно-элементной модели, могут помочь следующие рекомендации:

  • Крупная сетка, вероятно, будет достаточной
  • Держите сетку как можно более квадратной
  • Требуется более тщательное планирование
  • Толстые элементы оболочки для балок и плит, балочные элементы в других местах (например,грамм. для распорки)
  • В качестве альтернативы можно использовать балочные элементы для составных пластин стальных балок
  • Требуется дополнительная проверка
  • Необходимые анизотропные свойства в областях с трещинами

[вверх] Выводы

Ростверк — это обычно используемая модель мостовых настилов, и она относительно проста в использовании. Тем не менее, модель конечных элементов, скорее всего, по-прежнему потребуется для анализа упругого критического продольного изгиба стальных балок, поддерживающих влажную нагрузку бетона.Следовательно, модель конечных элементов может рассматриваться для всего анализа, что также может иметь возможное преимущество в виде лучшего моделирования реакции конструкции. Однако у этого подхода есть некоторые недостатки, поэтому многие проектировщики используют ростверк для основного анализа и используют модель конечных элементов только там, где это абсолютно необходимо.

[вверх] Список литературы

  1. ↑ BS EN 1992-1-1: 2004 + A1: 2014 Еврокод 2. Проектирование бетонных конструкций. Общие правила и правила для зданий, BSI
  2. 2.0 2,1 BS EN 1994-2: 2005, Еврокод 4. Проектирование композитных стальных и бетонных конструкций. Общие правила и правила для мостов, BSI
  3. ↑ BS EN 1993-2: 2006, Еврокод 3. Проектирование стальных конструкций. Стальные мосты, BSI
  4. ↑ BS 5400-3: 2000
    Стальные, бетонные и композитные мосты. Свод правил проектирования стальных мостов. BSI

[вверх] Ресурсы

[вверху] См. Также

[вверх] Внешние ссылки

Моделирование и анализ балочных мостов

Большинство автомобильных мостов представляют собой балочные конструкции с однопролетными или непрерывными пролетами, а композитные мосты имеют форму многобалочных или лестничных настилов.Определение основных эффектов различных комбинаций нагрузок часто может быть достигнуто с помощью 2-мерной аналитической модели, но для более полного анализа необходима 3-мерная модель.
В этой статье рассматриваются соответствующие методы анализа и моделирования типичных мостов из стали и композитных материалов в Великобритании.

 

Полная конечно-элементная модель

[вверху] Варианты моделирования типичного многолучевого моста

 

Типичный многобалочный мост из стального композитного материала
Овербридж Тринити на трассе A120
(Изображение любезно предоставлено Аткинсом)

Существует три варианта моделирования типичного многобалочного стального композитного моста:

Линейный луч — довольно грубый инструмент.Он не учитывает поперечное распределение, он не дает результатов для поперечного дизайна (например, плиты или распорки) и не учитывает эффекты перекоса. Его не рекомендуется использовать для детального проектирования, но это полезный инструмент для предварительного проектирования.

Использование ростверка подходит во многих ситуациях. Использование модели конечных элементов даст более подробные результаты, особенно для неоднородных балок.

Хотя анализ ростверка широко используется и по-прежнему считается наиболее подходящим для большинства мостовых настилов, признано, что программы анализа методом конечных элементов становятся все более доступными и более простыми в использовании.Кроме того, требования Еврокода для проверки бокового продольного изгиба при кручении могут сделать анализ продольного изгиба методом конечных элементов важным для проверки случая нагрузки мокрой бетонной конструкции.

 

Поперечный разрез Овербриджа Тринити

[вверх] Анализ ростков

[вверх] Анализ ростков: обзор

 

Изометрический вид ростверка, представляющего собой настил балки

Модель ростверка — это обычная форма расчетной модели для композитных настилов мостов. Его ключевые особенности:

  • Это 2D модель
  • Конструктивное поведение линейно-упругое
  • Элементы балки выложены сеткой в ​​одной плоскости, жестко соединены в узлах
  • Продольные элементы представляют собой составные секции (т. Е. Основные балки с соответствующей плитой)
  • Поперечные элементы представляют собой только плиту или составное сечение, в котором присутствуют поперечные стальные балки

[вверх] Анализ ростверка: расположение элементов

Предлагается следующее руководство по выбору планировки ростверка:

  • Сохраняйте размеры сетки примерно квадратными
  • Используйте четное количество шагов сетки
  • Шаг сетки не более пролета / 8
  • Кромки вдоль парапета для облегчения приложения нагрузки
  • Вставьте дополнительные стыки для мест стыковки (обычно предполагается, что это 25% пролета от опор)

Для двухпролетного моста, как показано выше, подходящая компоновка будет такой, как показано ниже.

 

Типовая схема ростверка для двухпролетного многобалочного стального композитного моста

[вверх] Анализ ростверка: поэтапное применение загрузки

Для моделирования реакции конструкции на диапазон постоянных и переменных воздействий потребуются как минимум три различных модели ростверка:

  • Модель «только сталь» : Собственный вес стальных балок и вес влажного бетона во время строительства применяются к модели ростверка только из стали.Продольные элементы представляют собой только стальные балки, в то время как поперечные элементы обычно не требуются (они могут быть установлены как «фиктивные» элементы, чтобы сохранить то же расположение модели, что и составные модели).
  • «Долговременная» композитная модель : Постоянные воздействия, применяемые к завершенной конструкции (в основном, наложенные постоянные нагрузки, такие как покрытие поверхности, и ограничение кривизны из-за усадки), применяются к долговременной композитной модели. Характеристики сечения продольных составных элементов и поперечных элементов, представляющих плиту, рассчитываются с использованием длительного модуля упругости бетона.Если плита находится в состоянии растяжения, могут потребоваться свойства сечения с трещинами.
  • «Краткосрочная» составная модель. : Переходные воздействия (в основном вертикальные нагрузки из-за дорожного движения) применяются к краткосрочной составной модели. Свойства сечения рассчитываются так же, как и для долгосрочной модели, но с использованием краткосрочного модуля упругости. Опять же, свойства сечения с трещинами могут потребоваться там, где плита находится в состоянии растяжения.

Обратите внимание, что BS EN 1992-1-1 [1] дает несколько иной долгосрочный модуль упругости бетона для усадочной нагрузки, поэтому теоретически должна быть четвертая модель для анализа эффектов усадки.Однако модуль существенно не отличается от «обычного» долгосрочного значения, и разумно применить удерживающие моменты усадки к долгосрочной модели для определения вторичных моментов в балках. Однако соответствующие свойства сечения для усадки следует использовать для расчета напряжений, вызванных этими эффектами.

[вверх] Анализ ростков: свойства сечения

 

Свойства трансформируемого сечения элемента составной балки ростверка

Обычно все свойства сечения в «стальных элементах» рассчитываются с использованием преобразованной площади бетонного фланца (разделить на коэффициент модульности n = E s / E c ).Следующие свойства сечения необходимы для каждого отдельного сечения:

  • Только сталь: только свойства стальной балки
  • Долговечный композит: бетонная поверхность, преобразованная в долгосрочную модульную конструкцию
  • Кратковременный композит: бетонная поверхность, преобразованная для кратковременного модульного соотношения
  • Свойства с трещинами (в областях коробления): площадь армирования принимается как эффективная только в сечении плиты.

Для свойств сечения без трещин армирование в плите может игнорироваться.

Типичный преобразованный разрез показан справа.

[вверх] Степень трещинности

Если соотношение длин соседних пролетов составляет не менее 0,6, поправка на растрескивание плиты в зонах коробления может быть сделана путем использования свойств сечения с трещинами для 15% пролета с каждой стороны промежуточных опор, как показано ниже. Это предусмотрено BS EN 1994-2 [2] , пункт 5.4.2.3.

 

Степень трещиностойкости элементов балки

[вверху] Задержка сдвига в бетонных полках

Эффективная ширина бетонных полок основана на ширине плиты, равной L e /8 за пределами внешней стойки, по обе стороны от балки, где L e — это расстояние между точками обратного прогиба.Это определение дано в BS EN 1994-2 [2] , пункт 5.4.1.2, где приведены приблизительные значения L и . Обратите внимание, что запаздывание сдвига необходимо учитывать как при ULS, так и при SLS (одинаковая эффективная ширина используется для обоих предельных состояний).

[вверх] Анализ ростверка: приложение нагрузок

Остаточные воздействия (собственный вес) распределяются между продольными элементами с помощью простой статики. Графическое изображение типичных постоянных нагрузок, приложенных к модели ростверка, показано ниже (слева).

Загрузка трафика обычно определяется программами «автозагрузки», которые являются частью большинства аналитических программ. Эти программы используют поверхности влияния для определения степени равномерно распределенных нагрузок и положения тандемных систем и специальных транспортных средств. Типичная поверхность влияния для места изгиба в середине пролета показана ниже (справа).

Пользователь решает, какие положения на модели наиболее важны для проектирования (например, промежуточные участки, стыки и положения опор), и требует, чтобы для этих положений были созданы поверхности влияния; затем автопогрузчик определяет позиции, в которых
применяется для наиболее обременительного эффекта.

  • Графическое изображение постоянных нагрузок, приложенных к модели

  • Типовая поверхность воздействия изгибающего момента в середине пролета двухпролетного четырехбалочного моста

[вверх] Анализ ростков: выход

Основная цель любого глобального анализа мостов — получение результатов, которые затем можно использовать при анализе и проектировании сечений. Обычно на выходе будут изгибающие моменты, поперечные силы и крутящие моменты (если они значительны) в главных балках.Прогибы также потребуются для расчетов из преамбула. Результат, вероятно, будет либо графическим, либо табличным, оба полезны. Графический вывод позволяет быстро установить на глаз пиковые моменты и сдвиги, а также позволяет проектировщику визуально проверить, ведет ли модель себя так, как ожидалось. Табличный вывод может быть полезен для постобработки в виде электронной таблицы и одновременного чтения сопутствующих эффектов нагрузки. Однако проектировщику следует принимать решения о том, где находятся критические места на конструкции, чтобы избежать чрезмерного количества выходных данных и постобработки.

  • Типовое графическое представление вывода изгибающего момента

  • Типичный результат анализа влияния нагрузки на ростверк

[вверх] Анализ ростков: прочие соображения

 

Графическое изображение изгибающих моментов в элементах плиты в ростверке модели

Также необходимо учитывать следующее:

  • Глобальные эффекты для расчета поперечных перекрытий : возьмите эффекты нагрузки на поперечные элементы из модели ростверка и добавьте к эффектам из локального анализа (например.грамм. Диаграммы Пучера. См. SCI 356). Любые нагрузки, приложенные к ростверку, следует прикладывать к швам только для этой цели, чтобы избежать неточного двойного учета местных эффектов.
  • Распорка : Связь обычно моделируется с помощью гибкого на сдвиг элемента (консервативно для использования элемента, который не учитывает гибкость при сдвиге) с эквивалентными свойствами, рассчитанными на основе модели плоской рамы. Модель плоской рамы также может использоваться для расчета распорок с использованием отклонений от модели ростверка, приложенных к модели плоской рамы, и при необходимости удерживающих сил.
  • Опоры : Все опоры обеспечивают только вертикальное ограничение в 2D ростверке. Влияние невертикальных нагрузок необходимо оценивать вручную или с помощью альтернативной модели.
  • Ручные проверки : Ручные проверки должны проводиться для проверки модели, например, проверка изгибающих моментов при равномерной нагрузке и проверка опорных реакций
  • Комбинированное программное обеспечение для глобального анализа и проектирования сечений : Некоторое программное обеспечение предлагает комбинированный глобальный анализ и возможность проектирования сечений.Проектировщики должны убедиться, что они понимают теорию, лежащую в основе проектирования секций балки, и проводить проверки на выходе.
 

Модель плоской рамы для оценки жесткости (для элемента модели ростверка) и для определения эффектов от смещений из выходного

[вверх] Анализ ростков: варианты

[вверх] Мосты косые

Многие мосты имеют перекос в плане, и модель ростверка позволяет приспособить это расположение одним из нескольких способов.Рассмотрим типичный план косого моста, показанный ниже.

 

Для малых углов перекоса сетку можно выровнять с перекосом, как показано ниже.

 

перекос сетки (перекос не более 20 °)

Для больших углов перекоса поведение элементов перекоса становится неточным, и лучше вернуться к ортогональной сетке.На концах необходимо компенсировать перекос.

 

Ортогональная сетка для большего перекоса. (наклон более 20 °)

[вверх] Мосты изогнутые
 

Типовой изогнутый композитный мост

Это относительно обычное явление для мостов на развязках с разнесенными уровнями и в других местах, где пространство ограничено, чтобы иметь значительную кривизну в плане.

В таких ситуациях можно использовать изогнутые ростверки, хотя при выборе компоновки и рассмотрении результатов анализа необходимо соблюдать осторожность, поскольку крутильные эффекты в плите нелегко отделить от эффектов коробления в стальных балках. Кроме того, после анализа ростверка необходимо будет учесть влияние горизонтальных «радиальных» сил в стальных фланцах.

 

Модель изогнутого ростверка для 4-пролетного моста

[вверх] Балки переменной глубины

Балки переменной глубины, такие как показанные ниже, можно легко разместить в модели ростверка путем изменения свойств сечения по длине продольных элементов.

 

Балки переменной глубины в двухпролетном мосту
(Изображение любезно предоставлено Аткинсом)

[вверху] Лестничные настилы
 

Лестничный мостик (этап строительства, со спусковой головкой)

Лестничные настилы, подобные показанному справа, можно смоделировать с помощью ростверков.

В модели ростверка для лестничной площадки:

  • Основные лонжероны представляют собой сплошное составное сечение
  • Промежуточные лонжероны представляют собой только плиту
  • Поперечные элементы обычно представляют собой составное сечение, включая поперечные балки.Иногда могут быть включены только промежуточные элементы плиты между композитными поперечными элементами.

Вероятно, потребуется 3D-модель для моделирования взаимодействия между поперечными балками и главными балками, в частности, для определения жесткости U-образной рамы и воздействия на поперечные балки из-за местного применения специальных транспортных средств.

 
 

Трехмерная модель лестничного настила для взаимодействия поперечных балок и главных балок

[вверх] Мосты интегральные

Для интегрального моста можно использовать двухмерный ростверк с поворотными пружинными опорами на встроенных опорах в сочетании с двухмерной плоской моделью рамы для температурных воздействий.В качестве альтернативы можно использовать 3D-модель с участком ростверка для настила и вертикальными участками для примыкания и фундамента.

[вверху] Расчет критического изгиба на упругость для грузовой платформы «мокрый бетон»

 

Голые стальные балки в ожидании загрузки мокрого бетона

BS EN 1993-2 [3] не дает формулы для определения гибкости при продольном изгибе при кручении парных стальных балок с торсионными связями, когда пара балок склонна изгибаться как пара, сочувствуя друг другу, а не между ограничениями. .Это обычный сценарий для мокрой загрузки бетона. Можно рассмотреть два варианта:

  • Расчет гибкости с помощью анализа критического продольного изгиба по КЭ
  • Используйте упрощенные правила для гибкости ограничителей скручивания, взятые из BS 5400-3 [4] (они доступны в формате Еврокода в SCI P356).

Для анализа КЭ пользователю необходимо просмотреть режимы потери устойчивости, чтобы найти режим продольного изгиба при кручении — можно обнаружить, что формы продольного изгиба стенки или полки возникают раньше, чем поперечные формы продольного изгиба при кручении.

Анализ КЭ, вероятно, даст значительные преимущества по сравнению с упрощенным подходом, который обсуждается при проектировании балки.

Дальнейшие инструкции по определению сопротивления продольному изгибу балок из стальных листов в композитных мостах во время строительства (голая стальная ступень) и в эксплуатации (когда плита настила действует как верхний фланец) доступны в ED008

[вверх] Конечно-элементное моделирование

Поскольку вполне вероятно, что для проверки упругой критической потери устойчивости потребуется модель конечных элементов, можно рассмотреть возможность использования полной модели конечных элементов для всего анализа.Это также имеет то преимущество, что структурный отклик потенциально лучше моделируется. Однако есть ряд недостатков, в том числе:

 

Полная конечно-элементная модель

  • Более длительная установка
  • Больше шансов на ошибку
  • Больше времени для получения результатов
  • Для уверенного использования требуется больше практики
  • Отладка сложнее
  • Пиковые опорные моменты могут быть недооценены

Если принято решение об использовании конечно-элементной модели, могут помочь следующие рекомендации:

  • Крупная сетка, вероятно, будет достаточной
  • Держите сетку как можно более квадратной
  • Требуется более тщательное планирование
  • Толстые элементы оболочки для балок и плит, балочные элементы в других местах (например,грамм. для распорки)
  • В качестве альтернативы можно использовать балочные элементы для составных пластин стальных балок
  • Требуется дополнительная проверка
  • Необходимые анизотропные свойства в областях с трещинами

[вверх] Выводы

Ростверк — это обычно используемая модель мостовых настилов, и она относительно проста в использовании. Тем не менее, модель конечных элементов, скорее всего, по-прежнему потребуется для анализа упругого критического продольного изгиба стальных балок, поддерживающих влажную нагрузку бетона.Следовательно, модель конечных элементов может рассматриваться для всего анализа, что также может иметь возможное преимущество в виде лучшего моделирования реакции конструкции. Однако у этого подхода есть некоторые недостатки, поэтому многие проектировщики используют ростверк для основного анализа и используют модель конечных элементов только там, где это абсолютно необходимо.

[вверх] Список литературы

  1. ↑ BS EN 1992-1-1: 2004 + A1: 2014 Еврокод 2. Проектирование бетонных конструкций. Общие правила и правила для зданий, BSI
  2. 2.0 2,1 BS EN 1994-2: 2005, Еврокод 4. Проектирование композитных стальных и бетонных конструкций. Общие правила и правила для мостов, BSI
  3. ↑ BS EN 1993-2: 2006, Еврокод 3. Проектирование стальных конструкций. Стальные мосты, BSI
  4. ↑ BS 5400-3: 2000
    Стальные, бетонные и композитные мосты. Свод правил проектирования стальных мостов. BSI

[вверх] Ресурсы

[вверху] См. Также

[вверх] Внешние ссылки

Моделирование и анализ балочных мостов

Большинство автомобильных мостов представляют собой балочные конструкции с однопролетными или непрерывными пролетами, а композитные мосты имеют форму многобалочных или лестничных настилов.Определение основных эффектов различных комбинаций нагрузок часто может быть достигнуто с помощью 2-мерной аналитической модели, но для более полного анализа необходима 3-мерная модель.
В этой статье рассматриваются соответствующие методы анализа и моделирования типичных мостов из стали и композитных материалов в Великобритании.

 

Полная конечно-элементная модель

[вверху] Варианты моделирования типичного многолучевого моста

 

Типичный многобалочный мост из стального композитного материала
Овербридж Тринити на трассе A120
(Изображение любезно предоставлено Аткинсом)

Существует три варианта моделирования типичного многобалочного стального композитного моста:

Линейный луч — довольно грубый инструмент.Он не учитывает поперечное распределение, он не дает результатов для поперечного дизайна (например, плиты или распорки) и не учитывает эффекты перекоса. Его не рекомендуется использовать для детального проектирования, но это полезный инструмент для предварительного проектирования.

Использование ростверка подходит во многих ситуациях. Использование модели конечных элементов даст более подробные результаты, особенно для неоднородных балок.

Хотя анализ ростверка широко используется и по-прежнему считается наиболее подходящим для большинства мостовых настилов, признано, что программы анализа методом конечных элементов становятся все более доступными и более простыми в использовании.Кроме того, требования Еврокода для проверки бокового продольного изгиба при кручении могут сделать анализ продольного изгиба методом конечных элементов важным для проверки случая нагрузки мокрой бетонной конструкции.

 

Поперечный разрез Овербриджа Тринити

[вверх] Анализ ростков

[вверх] Анализ ростков: обзор

 

Изометрический вид ростверка, представляющего собой настил балки

Модель ростверка — это обычная форма расчетной модели для композитных настилов мостов.Его ключевые особенности:

  • Это 2D модель
  • Конструктивное поведение линейно-упругое
  • Элементы балки выложены сеткой в ​​одной плоскости, жестко соединены в узлах
  • Продольные элементы представляют собой составные секции (т. Е. Основные балки с соответствующей плитой)
  • Поперечные элементы представляют собой только плиту или составное сечение, в котором присутствуют поперечные стальные балки

[вверх] Анализ ростверка: расположение элементов

Предлагается следующее руководство по выбору планировки ростверка:

  • Сохраняйте размеры сетки примерно квадратными
  • Используйте четное количество шагов сетки
  • Шаг сетки не более пролета / 8
  • Кромки вдоль парапета для облегчения приложения нагрузки
  • Вставьте дополнительные стыки для мест стыковки (обычно предполагается, что это 25% пролета от опор)

Для двухпролетного моста, как показано выше, подходящая компоновка будет такой, как показано ниже.

 

Типовая схема ростверка для двухпролетного многобалочного стального композитного моста

[вверх] Анализ ростверка: поэтапное применение загрузки

Для моделирования реакции конструкции на диапазон постоянных и переменных воздействий потребуются как минимум три различных модели ростверка:

  • Модель «только сталь» : Собственный вес стальных балок и вес влажного бетона во время строительства применяются к модели ростверка только из стали.Продольные элементы представляют собой только стальные балки, в то время как поперечные элементы обычно не требуются (они могут быть установлены как «фиктивные» элементы, чтобы сохранить то же расположение модели, что и составные модели).
  • «Долговременная» композитная модель : Постоянные воздействия, применяемые к завершенной конструкции (в основном, наложенные постоянные нагрузки, такие как покрытие поверхности, и ограничение кривизны из-за усадки), применяются к долговременной композитной модели. Характеристики сечения продольных составных элементов и поперечных элементов, представляющих плиту, рассчитываются с использованием длительного модуля упругости бетона.Если плита находится в состоянии растяжения, могут потребоваться свойства сечения с трещинами.
  • «Краткосрочная» составная модель. : Переходные воздействия (в основном вертикальные нагрузки из-за дорожного движения) применяются к краткосрочной составной модели. Свойства сечения рассчитываются так же, как и для долгосрочной модели, но с использованием краткосрочного модуля упругости. Опять же, свойства сечения с трещинами могут потребоваться там, где плита находится в состоянии растяжения.

Обратите внимание, что BS EN 1992-1-1 [1] дает несколько иной долгосрочный модуль упругости бетона для усадочной нагрузки, поэтому теоретически должна быть четвертая модель для анализа эффектов усадки.Однако модуль существенно не отличается от «обычного» долгосрочного значения, и разумно применить удерживающие моменты усадки к долгосрочной модели для определения вторичных моментов в балках. Однако соответствующие свойства сечения для усадки следует использовать для расчета напряжений, вызванных этими эффектами.

[вверх] Анализ ростков: свойства сечения

 

Свойства трансформируемого сечения элемента составной балки ростверка

Обычно все свойства сечения в «стальных элементах» рассчитываются с использованием преобразованной площади бетонного фланца (разделить на коэффициент модульности n = E s / E c ).Следующие свойства сечения необходимы для каждого отдельного сечения:

  • Только сталь: только свойства стальной балки
  • Долговечный композит: бетонная поверхность, преобразованная в долгосрочную модульную конструкцию
  • Кратковременный композит: бетонная поверхность, преобразованная для кратковременного модульного соотношения
  • Свойства с трещинами (в областях коробления): площадь армирования принимается как эффективная только в сечении плиты.

Для свойств сечения без трещин армирование в плите может игнорироваться.

Типичный преобразованный разрез показан справа.

[вверх] Степень трещинности

Если соотношение длин соседних пролетов составляет не менее 0,6, поправка на растрескивание плиты в зонах коробления может быть сделана путем использования свойств сечения с трещинами для 15% пролета с каждой стороны промежуточных опор, как показано ниже. Это предусмотрено BS EN 1994-2 [2] , пункт 5.4.2.3.

 

Степень трещиностойкости элементов балки

[вверху] Задержка сдвига в бетонных полках

Эффективная ширина бетонных полок основана на ширине плиты, равной L e /8 за пределами внешней стойки, по обе стороны от балки, где L e — это расстояние между точками обратного прогиба.Это определение дано в BS EN 1994-2 [2] , пункт 5.4.1.2, где приведены приблизительные значения L и . Обратите внимание, что запаздывание сдвига необходимо учитывать как при ULS, так и при SLS (одинаковая эффективная ширина используется для обоих предельных состояний).

[вверх] Анализ ростверка: приложение нагрузок

Остаточные воздействия (собственный вес) распределяются между продольными элементами с помощью простой статики. Графическое изображение типичных постоянных нагрузок, приложенных к модели ростверка, показано ниже (слева).

Загрузка трафика обычно определяется программами «автозагрузки», которые являются частью большинства аналитических программ. Эти программы используют поверхности влияния для определения степени равномерно распределенных нагрузок и положения тандемных систем и специальных транспортных средств. Типичная поверхность влияния для места изгиба в середине пролета показана ниже (справа).

Пользователь решает, какие положения на модели наиболее важны для проектирования (например, промежуточные участки, стыки и положения опор), и требует, чтобы для этих положений были созданы поверхности влияния; затем автопогрузчик определяет позиции, в которых
применяется для наиболее обременительного эффекта.

  • Графическое изображение постоянных нагрузок, приложенных к модели

  • Типовая поверхность воздействия изгибающего момента в середине пролета двухпролетного четырехбалочного моста

[вверх] Анализ ростков: выход

Основная цель любого глобального анализа мостов — получение результатов, которые затем можно использовать при анализе и проектировании сечений. Обычно на выходе будут изгибающие моменты, поперечные силы и крутящие моменты (если они значительны) в главных балках.Прогибы также потребуются для расчетов из преамбула. Результат, вероятно, будет либо графическим, либо табличным, оба полезны. Графический вывод позволяет быстро установить на глаз пиковые моменты и сдвиги, а также позволяет проектировщику визуально проверить, ведет ли модель себя так, как ожидалось. Табличный вывод может быть полезен для постобработки в виде электронной таблицы и одновременного чтения сопутствующих эффектов нагрузки. Однако проектировщику следует принимать решения о том, где находятся критические места на конструкции, чтобы избежать чрезмерного количества выходных данных и постобработки.

  • Типовое графическое представление вывода изгибающего момента

  • Типичный результат анализа влияния нагрузки на ростверк

[вверх] Анализ ростков: прочие соображения

 

Графическое изображение изгибающих моментов в элементах плиты в ростверке модели

Также необходимо учитывать следующее:

  • Глобальные эффекты для расчета поперечных перекрытий : возьмите эффекты нагрузки на поперечные элементы из модели ростверка и добавьте к эффектам из локального анализа (например.грамм. Диаграммы Пучера. См. SCI 356). Любые нагрузки, приложенные к ростверку, следует прикладывать к швам только для этой цели, чтобы избежать неточного двойного учета местных эффектов.
  • Распорка : Связь обычно моделируется с помощью гибкого на сдвиг элемента (консервативно для использования элемента, который не учитывает гибкость при сдвиге) с эквивалентными свойствами, рассчитанными на основе модели плоской рамы. Модель плоской рамы также может использоваться для расчета распорок с использованием отклонений от модели ростверка, приложенных к модели плоской рамы, и при необходимости удерживающих сил.
  • Опоры : Все опоры обеспечивают только вертикальное ограничение в 2D ростверке. Влияние невертикальных нагрузок необходимо оценивать вручную или с помощью альтернативной модели.
  • Ручные проверки : Ручные проверки должны проводиться для проверки модели, например, проверка изгибающих моментов при равномерной нагрузке и проверка опорных реакций
  • Комбинированное программное обеспечение для глобального анализа и проектирования сечений : Некоторое программное обеспечение предлагает комбинированный глобальный анализ и возможность проектирования сечений.Проектировщики должны убедиться, что они понимают теорию, лежащую в основе проектирования секций балки, и проводить проверки на выходе.
 

Модель плоской рамы для оценки жесткости (для элемента модели ростверка) и для определения эффектов от смещений из выходного

[вверх] Анализ ростков: варианты

[вверх] Мосты косые

Многие мосты имеют перекос в плане, и модель ростверка позволяет приспособить это расположение одним из нескольких способов.Рассмотрим типичный план косого моста, показанный ниже.

 

Для малых углов перекоса сетку можно выровнять с перекосом, как показано ниже.

 

перекос сетки (перекос не более 20 °)

Для больших углов перекоса поведение элементов перекоса становится неточным, и лучше вернуться к ортогональной сетке.На концах необходимо компенсировать перекос.

 

Ортогональная сетка для большего перекоса. (наклон более 20 °)

[вверх] Мосты изогнутые
 

Типовой изогнутый композитный мост

Это относительно обычное явление для мостов на развязках с разнесенными уровнями и в других местах, где пространство ограничено, чтобы иметь значительную кривизну в плане.

В таких ситуациях можно использовать изогнутые ростверки, хотя при выборе компоновки и рассмотрении результатов анализа необходимо соблюдать осторожность, поскольку крутильные эффекты в плите нелегко отделить от эффектов коробления в стальных балках. Кроме того, после анализа ростверка необходимо будет учесть влияние горизонтальных «радиальных» сил в стальных фланцах.

 

Модель изогнутого ростверка для 4-пролетного моста

[вверх] Балки переменной глубины

Балки переменной глубины, такие как показанные ниже, можно легко разместить в модели ростверка путем изменения свойств сечения по длине продольных элементов.

 

Балки переменной глубины в двухпролетном мосту
(Изображение любезно предоставлено Аткинсом)

[вверху] Лестничные настилы
 

Лестничный мостик (этап строительства, со спусковой головкой)

Лестничные настилы, подобные показанному справа, можно смоделировать с помощью ростверков.

В модели ростверка для лестничной площадки:

  • Основные лонжероны представляют собой сплошное составное сечение
  • Промежуточные лонжероны представляют собой только плиту
  • Поперечные элементы обычно представляют собой составное сечение, включая поперечные балки.Иногда могут быть включены только промежуточные элементы плиты между композитными поперечными элементами.

Вероятно, потребуется 3D-модель для моделирования взаимодействия между поперечными балками и главными балками, в частности, для определения жесткости U-образной рамы и воздействия на поперечные балки из-за местного применения специальных транспортных средств.

 
 

Трехмерная модель лестничного настила для взаимодействия поперечных балок и главных балок

[вверх] Мосты интегральные

Для интегрального моста можно использовать двухмерный ростверк с поворотными пружинными опорами на встроенных опорах в сочетании с двухмерной плоской моделью рамы для температурных воздействий.В качестве альтернативы можно использовать 3D-модель с участком ростверка для настила и вертикальными участками для примыкания и фундамента.

[вверху] Расчет критического изгиба на упругость для грузовой платформы «мокрый бетон»

 

Голые стальные балки в ожидании загрузки мокрого бетона

BS EN 1993-2 [3] не дает формулы для определения гибкости при продольном изгибе при кручении парных стальных балок с торсионными связями, когда пара балок склонна изгибаться как пара, сочувствуя друг другу, а не между ограничениями. .Это обычный сценарий для мокрой загрузки бетона. Можно рассмотреть два варианта:

  • Расчет гибкости с помощью анализа критического продольного изгиба по КЭ
  • Используйте упрощенные правила для гибкости ограничителей скручивания, взятые из BS 5400-3 [4] (они доступны в формате Еврокода в SCI P356).

Для анализа КЭ пользователю необходимо просмотреть режимы потери устойчивости, чтобы найти режим продольного изгиба при кручении — можно обнаружить, что формы продольного изгиба стенки или полки возникают раньше, чем поперечные формы продольного изгиба при кручении.

Анализ КЭ, вероятно, даст значительные преимущества по сравнению с упрощенным подходом, который обсуждается при проектировании балки.

Дальнейшие инструкции по определению сопротивления продольному изгибу балок из стальных листов в композитных мостах во время строительства (голая стальная ступень) и в эксплуатации (когда плита настила действует как верхний фланец) доступны в ED008

[вверх] Конечно-элементное моделирование

Поскольку вполне вероятно, что для проверки упругой критической потери устойчивости потребуется модель конечных элементов, можно рассмотреть возможность использования полной модели конечных элементов для всего анализа.Это также имеет то преимущество, что структурный отклик потенциально лучше моделируется. Однако есть ряд недостатков, в том числе:

 

Полная конечно-элементная модель

  • Более длительная установка
  • Больше шансов на ошибку
  • Больше времени для получения результатов
  • Для уверенного использования требуется больше практики
  • Отладка сложнее
  • Пиковые опорные моменты могут быть недооценены

Если принято решение об использовании конечно-элементной модели, могут помочь следующие рекомендации:

  • Крупная сетка, вероятно, будет достаточной
  • Держите сетку как можно более квадратной
  • Требуется более тщательное планирование
  • Толстые элементы оболочки для балок и плит, балочные элементы в других местах (например,грамм. для распорки)
  • В качестве альтернативы можно использовать балочные элементы для составных пластин стальных балок
  • Требуется дополнительная проверка
  • Необходимые анизотропные свойства в областях с трещинами

[вверх] Выводы

Ростверк — это обычно используемая модель мостовых настилов, и она относительно проста в использовании. Тем не менее, модель конечных элементов, скорее всего, по-прежнему потребуется для анализа упругого критического продольного изгиба стальных балок, поддерживающих влажную нагрузку бетона.Следовательно, модель конечных элементов может рассматриваться для всего анализа, что также может иметь возможное преимущество в виде лучшего моделирования реакции конструкции. Однако у этого подхода есть некоторые недостатки, поэтому многие проектировщики используют ростверк для основного анализа и используют модель конечных элементов только там, где это абсолютно необходимо.

[вверх] Список литературы

  1. ↑ BS EN 1992-1-1: 2004 + A1: 2014 Еврокод 2. Проектирование бетонных конструкций. Общие правила и правила для зданий, BSI
  2. 2.0 2,1 BS EN 1994-2: 2005, Еврокод 4. Проектирование композитных стальных и бетонных конструкций. Общие правила и правила для мостов, BSI
  3. ↑ BS EN 1993-2: 2006, Еврокод 3. Проектирование стальных конструкций. Стальные мосты, BSI
  4. ↑ BS 5400-3: 2000
    Стальные, бетонные и композитные мосты. Свод правил проектирования стальных мостов. BSI

[вверх] Ресурсы

[вверху] См. Также

[вверх] Внешние ссылки

Инженер-строитель: Фундаменты ростверка — Описание.

Фундамент ростверка состоит из ряда слоев балок, обычно уложенных под прямым углом друг к другу и используемых для распределения тяжелых точечных нагрузок от надстройки до приемлемого давления на грунт ( см. Рис. 9.58, ).

Основания для ростверков в наши дни редко бывают экономичными для постоянных фундаментов, за исключением очень тяжелых нагрузок. Однако их сборная форма может оказаться очень полезной для временных работ, особенно там, где требуется повторное использование фундамента ( см. Рис.9,59 ).

Балка ростверка может быть из любого материала, чаще всего из стали, сборного железобетона или дерева. Однако в некоторых постоянных ситуациях, когда существуют необычные обстоятельства, такие как изобилие прочной древесины или возможное повторное использование существующих прокатных стальных профилей, ростверк может оказаться как успешным, так и экономичным. В постоянных условиях долговечность становится важным фактором проектирования, а защита и / или выбор подходящих материалов — важная часть конструкции.В случае стального ростверка под землей это обычно достигается за счет бетонирования ростверка. Бетон для средних грунтовых условий обычно требует минимального покрытия стали толщиной 100 мм. В случае деревянных ростверков выбор подходящей породы древесины и / или подходящей защиты для консервации имеет решающее значение для проектирования, как и для деревянных свай.

Рис. 9.58 Фундамент ростверка.

Расчет ростверка выполняется путем расчета нагрузок и моментов, прилагаемых к надстройке, и определения необходимой площади основания с использованием подходящего допустимого давления на грунт для данного состояния.

В этой области можно выбрать количество и размер каждого слоя ростверка. Затем слои конструируются так, чтобы выступать от края слоя выше, что определяет размеры балки, необходимые для противодействия приложенным изгибающим моментам и поперечным силам ( см. Рис. 9.60, ).

Если ростверк облицован бетоном, а последовательность и метод строительства и нагрузки совместимы с требованиями проекта, можно использовать комбинированное действие балки и бетона.

Рис. 9.59 Фундамент ростверка — временные работы.

Рис. 9.60 Фундамент ростверка — схемы изгиба и сдвига.

beam% 20grillage — английское определение, грамматика, произношение, синонимы и примеры

Средство регулировки, в свою очередь, содержит средство отклонения, расположенное между источником света и средством сканирования для создания локального смещения параллельного пучка световых лучей (2) до попадания на средство сканирования.

патенты-wipo

OpenSubtitles2018.v3

любые другие меры по удалению или уменьшению несимметричной части балки «.

UN-2

За исключением мотоциклов, каждое транспортное средство с максимальной расчетной скоростью, превышающей 40 км (25 миль) в час, должно быть оборудовано спереди четным количеством белых фар дальнего света или соответствующими частями адаптивной системы переднего освещения.

UN-2

Затем вычисляется эта геометрия пересечения и схема пересечения этих лучей .

патенты-wipo

Для этого он будет использовать сфокусированный лазерный луч , называемый оптическим пинцетом, и проецировать изображение частицы на светочувствительный детектор.

Гига-френ

Подсистема разделения лучей может принимать электромагнитное излучение от первой оптической подсистемы и может разделять принимаемое электромагнитное излучение на несколько лучей электромагнитного излучения.

патенты-wipo

Способ изготовления распределенного брэгговского отражателя путем контроля состава материала с помощью молекулярной эпитаксии луча

патенты-wipo

б.Производственное оборудование для ионной имплантации, имеющее пучков токов 5 мА и более;

eurlex-diff-2018-06-20

Настоящее изобретение относится к горизонтальному выравнивающему устройству, которое позволяет лучу лазера , излучаемому лазерным выравнивателем, точно и легко перемещаться на высоту, требуемую рабочим.

патенты-wipo

Фазовый пучок антиматерии ангельских нейтронов разрушает континуум частицы / космос!

QED

При условии, является метод лазерного излучения для экспонирования путем перемещения сравнительно опорное основание (2) для поддержки множества объектов (работ (5)) и лазерный + луча облучая устройство (3) для облучения объекта с помощью лазера + луча при выполнении сервоуправления фокусировкой на основе отраженного света.

патенты-wipo

Конструкция фиксированной маски для улучшения юстировки относительно ионного пучка

патенты-wipo

Изделия из стали и металлических сплавов, в частности балки, балки, шпунты, стальные стержни, стойки, балки , балки , пилоны, мачты и полосы, фланцы, соединители и муфты, фольга, облицовка и листы

tmClass

В способе изготовления полуизолирующего кристалла SiC по настоящему изобретению получают полуизолирующий кристалл SiC, имеющий удельное сопротивление 1 × 10 + 5 Ом · см или более, путем облучения проводящего кристалла SiC n-типа с плотностью доноров 1 × 1013 — 1 × 1019 на см3 с электронным пучком , имеющим энергию 80 кэВ или больше при флюенсе 1 × 10 + 16 на см2 на плотность донора 1 × 10 + 16 на см3.

патенты-wipo

Луч немедленно. Только один сигнал

opensubtitles2

Если используется Low beam AFS, формулы 9 должны быть адаптированы с учетом требуемых дополнительных измерений.

Eurlex2019

патенты-wipo

Лазер с внешним резонатором содержит: усилительный кристалл (12), линзу (11), поляризационный светоделитель луча (15), четвертьволновую пластину (16), отражатель (17) и решетку (18).

патенты-wipo

Изобретение относится к устройству для измерения объекта со спектральным разрешением, содержащему источник света для генерации широкополосного выходного луча , блок оптической дисперсии для спектрального диспергирования выходного луча по меньшей мере на один первый и второй спектральные поддиапазоны луч , блок модуляции света для модуляции первого и второго спектрального суб- луча , блок оптического объединения для объединения модулированных спектральных суб- лучей в измерительный луч и блок измерения для приема сигналов измерения объекта, на который падает измерительный луч .

патенты-wipo

3.3.1. Освещение экрана, создаваемое ведущим лучом , необходимо измерять с использованием тех же настроек фары, что и для измерений, определенных в 3.2.5–3.2.7.

ЕврЛекс-2

Обсуждение в GTB показало, что возможны интерпретации этого параграфа, которые допускают использование передних противотуманных фар типа «закрытый луч » или даже с источниками света, отличными от ламп накаливания, или с несменными источниками света.

UN-2

Луч датчика движения наверху лестницы здесь очень низко опускается.

OpenSubtitles2018.v3

Схема контроллера акустооптического модулятора (82) подключена для приема входных данных и управляет акустооптическим модулятором (64) для независимой модуляции множества выходных лучей на основе входных данных.

патенты-wipo

Селективная фотоионизация осуществляется с помощью луча лазера с круговой или линейной параллельной поляризацией , обеспечивающего трехступенчатый путь фотоионизации.

патенты-wipo

Grillage Foundation | Виды ростверка

Самый важный момент в этой статье

Фундамент ростверка

Фундамент, состоящий из одного, двух или более слоев балок (обычно стальных), наложенных на бетонный слой для распределения нагрузки по большой площади, является фундаментом для гриля.

Используется в основании колонн. Эти слои залиты бетоном и расположены под прямым углом друг к другу.Этот тип фундамента обычно используется для столбов и колонных лесов с тяжелой конструкцией.

Хотя фундамент и сетка выглядят одинаково, они разные. Там, где фундамент передает нагрузку от конструкции на землю, сетка распределяет тяжелые нагрузки на большие площади.

Также прочтите: Сваи для фундамента | Использование свайного фундамента | Характеристики свайного фундамента

Типы фундаментов ростверков

По материалам, использованным при постройке, фундамент ростверка бывает двух типов:

  • Фундамент стальной ростверк
  • Деревянный фундамент для решетки

Фундамент стальной ростверк

Фундамент стального ростверка состоит из стыков или стальных балок, поставляемых в одинарном или двойном слое.Его название определяет его функцию и структуру, поскольку он состоит из стальных балок, структурно известных как стальные катаные балки.

Обеспечивается минимальное покрытие 10 см на внешних сторонах внешних балок, а также над верхними полками верхнего слоя.

Глубина бетона должна быть не менее 15 см. После выравнивания основания и заливки бетона необходимо убедиться, что уплотнение выполнено правильно и образуется непроницаемый слой толщиной не менее 15 см.

Защищает стальные балки от грунтовых вод, которые могут вызвать коррозию. Затем укладываем первый слой балок на бетонное основание на расстоянии от 100 до 300 мм с помощью трубных разделителей.

Затем заливаем бетон между балками первого слоя и вокруг них. После этого размещаем второй уровень балки под прямым углом к ​​первым уровням с помощью разделителя.

Затем снова заливаем бетон между стальными балками и вокруг них. При этом, мы подключаем стальные опоры для верхнего слоя с помощью опорной плиты, боковых углов, и усиливающей накладки.

Эти соединительные элементы также заделаны в бетон, чтобы сделать соединение жестким.

Также прочтите: Разница между опорой и фундаментом | Что такое опора и фундамент

Деревянный ростверк

Фундамент деревянный предназначен для кладки стен, сильно нагруженных деревянными колоннами.

Этот фундамент особенно полезен на затопленных участках, где несущая способность почвы очень низкая и где нагрузка на почву ограничена 50-60 кН / м2.

Деревянные доски и деревянные балки используются вместо стальных балок. между деревянными стыками нет бетона.

Однако нижний бетон, подаваемый в стальную решетку, заменяется деревянной платформой, построенной из деревянных досок.

Выемка фундамента ровная. Нижний слой деревянных досок размером от 20 до 30 см и шириной от 5 до 7,5 см укладывается рядом, без промежутков между ними.

Над этим слоем под прямым углом размещается Деревянная балка того же сечения, что и Деревянный столб.

Затем снова кладут еще один слой досок под прямым углом к ​​направлению балок. Верхний слой досок может быть 7,5-10 см. Толстые, простирающиеся на всю ширину основания стены, на которой возводится каменная стена.

Также прочтите: Что такое Raft Foundation | Тип опоры | Деталь опоры плота

Проект фундамента Grillage

Для проекта решетчатого фундамента необходимо рассчитать нагрузки и моменты надстройки.

Исходя из этого, нам необходимо определить базовую площадь, необходимую для адекватного допустимого давления на грунт в данном состоянии.

Разделив эту область, мы найдем номера и размер каждого слоя сетки. Затем мы должны спроектировать слой так, чтобы он наклонялся от края слоя выше.

Он определит размеры балки, необходимые для выдерживания изгибающих моментов и поперечных сил.

Сетка не может быть залита бетоном и по порядку, так как совместное действие балки и бетона будет деморализовано.Способ строительства и погрузки должен соответствовать требованиям проекта

.

Также прочтите: Двутавровая балка и двутавровая балка | Что такое двутавровая балка | Что такое двутавр

Характеристики ростверка

Решетка соединяет весь фундамент в единую конструкцию и, таким образом, способствует равномерному распределению веса дома и всех свай.

В большинстве случаев фундамент представляет собой монолитную железобетонную конструкцию.Сопротивление обеспечивается металлической конструкцией (стальным основанием для гриля).

Устройство фундамента ростверка

Шаги по установке фундамента для гриля показаны ниже:

  • Во-первых, для сплошной монолитной сетки нам необходимо изготовить и установить конструкцию. Мы предпочитаем этот мангал, потому что он более надежный.
  • Опалубка изготовлена ​​из кромочных досок в виде прямоугольных желобов. Его высота составляет 1 фут, а ширина равна минимальной толщине стены дома.Между каждой сеткой должно быть расстояние от 15 до 30 см.
  • Внутри опалубки мы должны определить структуру соединения арматуры с помощью соединительной проволоки. Кратчайшее расстояние от конструкции рядом с опалубкой должно быть таким же.
  • Затем арматура подключается к тому же соединительному проводу, который использовался ранее.
  • Затем бетон необходимо приготовить с помощью бетономешалки. Заливается в опалубку в непрерывном цикле. Соединения должны быть размещены на высоте примерно от 25 до 30 мм, чтобы они полностью погрузились в бетон.Бетон нужно заливать осторожно, чтобы избежать образования нежелательных полостей. 6. После заливки поверхность выровняйте и дайте высохнуть. После высыхания опалубку можно снимать. Фундамент готов.

Преимущества ростверка

  • Требует меньше времени и материалов на установку;
  • Уменьшает выделение тепла из дома с помощью фундамента, так как не применяется к мерзлому грунту.
  • Снижает уровень вибрации дома (это вполне реально, если дом построен рядом с магистралями).

Недостатки ростверка

  • Требуется необходимость сооружения свай на достаточно большой глубине;
  • пространство под сеткой необходимо заполнить и обогреть.

Краткая записка

Фундамент ростверк

Фундамент Grillage Foundation — это тип фундамента , который часто используется в основании колонны. Он состоит из одного, двух или более ярусов стальных балок, наложенных на слой бетона, при этом смежные ярусы расположены под прямым углом друг к другу, а все ярусы заключены в бетон.

Понравился пост? Поделитесь этим с вашими друзьями!

Рекомендуемое чтение —

.

Leave a reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *