УЗО электронное или электромеханическое, какое лучше
Сейчас уже никого не удивишь наличием в эл.щитке УЗО. Большинство поняло, что это необходимость, а не излишество. Однако не все знают, что УЗО бывают разные.На внешний вид они все одинаковые, однако внутреннее исполнение может существенно отличаться.
В зависимости от исполнения внутренней защиты УЗО бывают электромеханическими или электронными.
Грамотнее их стоит конечно называть функционально зависящие и не зависящие от напряжения цепи.
Как же их отличить друг от друга и в чем разница их работы?
Электромеханическое устройство защитного отключения
Для того, чтобы отключилось электромеханическое УЗО нужно только одно условие:
- ⚡ток утечки в цепи
В данном случае источником энергии для отключения устройства является сам сигнал, т.е. дифференциальный ток на который оно реагирует. При этом срабатывание УЗО не зависит от того, есть ли напряжение 220В в проводке или нет.
Внутри устройства находится маленький трансформатор. Который играет больше роль исполнительного механизма, чем сигнального (в отличии от электронного). Как только ток утечки появляется в защищаемой проводке, в обмотке трансформатора создается напряжение, которое заставляет срабатывать реле, после чего механически отключается само УЗО.
Электронное устройство защитного отключения
Чтобы отключилось электронное УЗО, уже нужно два условия:
- ⚡есть ток утечки
- ⚡присутствует напряжение в сети
Это означает, что для его работы должен быть посторонний источник питания. Основной элемент таких УЗО — электронная плата. И чтобы она сработала должен быть внешний источник напряжения.
Где его взять? Это ни какая-то батарейка или аккумулятор. Внешний источник — это напряжение 220В в самой сети. Таким образом, если к УЗО не подходит напряжение, данное устройство срабатывать не будет.
На основе подобных электронных УЗО не редко изготавливаются такие бытовые аппараты защиты как УЗО-розетки или УЗО-вилки.
Например в Европе в некоторых странах на все устройства данного типа (зависящие от напряжения в цепи) запрещено наносить сертификационный знак качества. Более того, устанавливать их в сеть разрешено только после устройств, не зависящих от питания цепи.
В последнее время за рубежом стали изготавливать электронные УЗО, в которых изначально закладывается функция отключения всей эл.установки потребителя, если исчезает напряжение в цепи УЗО. В США такие устройства изначально встраивают в розеточные блоки.
В России, согласно рекомендаций по применению УЗО из свода правил ”Электроустановки жилых и общественных зданий” — в жилых зданиях не допускается применять устройства защитного отключения, автоматически отключающие потребителя от сети при исчезновении или не допустимом снижении напряжения.
Причины отказа электронного УЗО
Когда же напряжение может не подходить к УЗО? Чаще всего свет в вашем доме может исчезнуть в следующих случаях:
- ⚡короткое замыкание проводов на питающей линии или подстанции
- ⚡плановые ремонтные работы
- ⚡пропадание-отгорание ноля в щитовой (в этом случае фаза по-прежнему будет приходить в ваш дом, но напряжения 220В у вас не будет)
Последний случай самый коварный. Если в таких условиях у вас произошло замыкание проводки на корпус оборудования (стиральная машинка, эл.титан), электронное устройство защитного отключения не сработает, даже когда вы коснетесь поврежденной эл.аппаратуры. Ток утечки будет, но напряжение к УЗО не подходит и оно не отключится.
Если же ноль отгорит в общей щитовой всего дома, куда приходит 3 фазы, это чревато появлением у вас в розетках линейного напряжения в 380В. При таком повышенном напряжении электронная начинка запросто выйдет из строя. Если это не будет сопровождаться дымом или искрением вы можете даже этого и не заметить.
После ликвидации аварии электронное УЗО уже не будет работоспособно. А вы по-прежнему будете на него рассчитывать и думать, что оно обеспечивает вашу защиту. Чтобы не попасть в такую ситуацию, на всех УЗО — электронных или электромеханических есть кнопка ТЕСТ.
При нажатии этой кнопки, УЗО автоматически должно выключиться. Проверять его таким образом следует не реже 1 раза в месяц, особенно после каждых скачков напряжения.
Кроме того, электронное УЗО перестает нормально работать не просто при исчезновении напряжения, но и также и при его значительном понижении. Убедиться в этом можно из видеоролика:
Преимущества и недостатки
Все преимущества и недостатки электромеханических и электронных УЗО можно свести в одну таблицу:
Параметр УЗО | Электронное УЗО | Электромеханическое УЗО |
---|---|---|
Цена | Дешевле | Дороже |
Конструкция | Проще | Сложнее |
Чувствительность | Выше | Ниже |
Работоспособность при обрыве нулевого провода | Нет | Да |
Работоспособность при значительном падении напряжения | Нет | Да |
Вероятность отказа при импульсных перенапряжениях | Выше | Ниже |
Подводя итог можно посоветовать, что самым оптимальным вариантом для установки в квартирный электрощиток, является именно электромеханическое УЗО. Тем более на сегодняшний день именно этот тип представлен наиболее широко в магазинах электротоваров.
Каким образом отличить, какое УЗО перед вами — электромеханическое или электронное, можно из этой статьи.
Статьи по теме
УЗО — электронное или электромеханическое
← Новые дифференциальные автоматические выключатели HAGER для 3-х фазной сети || ДАВ3 — Инновационное соединение Hager для бытового сегмента →
УЗО — электронное или электромеханическое — что лучше
Для защиты от утечек тока применяются выключатели дифференциального тока, или устройство защитного отключения (УЗО). В каждой новой квартире, новом доме это устройство становится необходимым оборудованием.
Однако, под общим названием могут продаваться устройства с принципиально различной внутренней конструкцией, которая определяет надежность работы всего УЗО. Конструкция может иметь различное расположение рычагов и кнопок управления, иметь стандартные или расширенные возможности подключения шин и проводов, но принципиальное значение имеет конструкция расцепителя УЗО. Он бывает электромеханический или электронный. Только как сходу отличить УЗО электромеханическое от электронного? Этот вопрос необходимо подробно осветить.
В чем отличие электромеханического УЗО от электронного
УЗО и дифавтоматы (это УЗО и автоматический выключатель в одном корпусе) по своему внутреннему конструктиву делятся на два вида: электромеханические и электронные. Это никак не влияет на рабочие параметры и технические характеристики. У многих сразу возникает вопрос: так в чем же их отличие? А отличие есть, и немаловажное: УЗО электромеханического типа сработает в любом случае, если на поврежденном участке появится ток утечки, не зависимо от напряжения в сети есть или нет. Основным рабочим модулем электромеханического УЗО является дифференциальный трансформатор (тороидальный сердечник с обмотками). Если на поврежденном участке возникла утечка, то во вторичной обмотке этого трансформатора появляется напряжение, включающее поляризованное реле, что в свою очередь приводит к срабатыванию механизма отключения.
Электронные УЗО срабатывают при наличии утечки тока на поврежденном участке и только при наличии напряжения в сети. То есть, для полноценной работы устройству защитного отключения электронного типа необходим внешний источник питания. Это связано с тем, что основным рабочим модулем электронных УЗО является электронная плата с усилителем. И без внешнего питания эта плата работать не будет.
Откуда берется источник питания? Внутри УЗО нет никаких батареек и аккумуляторов. А напряжение для питания электронной платы с усилителем поступает от внешней сети. Есть в сети 220В, и появилась утечка тока, — УЗО сработает! Если напряжения в сети нет — защитное устройство не сработает.
Итак, для срабатывания электромеханического УЗО необходима лишь утечка тока, для срабатывания электронного УЗО — необходима утечка тока и напряжение в сети.
На рисунке слева – УЗО Hager с электромеханическим расцепителем, справа УЗО с электронным расцепителем.
Насколько важно, чтобы защитное устройство сохраняло свою работоспособность при отсутствии напряжения? Уверен, многие пользователи ответят приблизительно так: если напряжение в сети есть, электронное УЗО будет работать. Если напряжения в сети нет, тогда зачем ему вообще работать, ведь напряжения в сети нет, значит и утечки тока браться неоткуда. А какие вы знаете аварийные ситуации, когда в доме или квартире может пропасть напряжение или, как в народе говорят, «нет света»? Это может быть авария на линии, подходящей к дому, могут быть ремонтные работы электрослужб, а может — еще одна очень распространенная проблема — отгорание нулевого провода в этажном щите. Вся аппаратура будет без признаков жизни, все сигнальные приборы (сигнальные лампы, если есть) будут свидетельствовать, что напряжения в сети нет. Однако фаза не куда не делась! Опасность поражения током сохраняется. Представим, что в такой ситуации возникло повреждение изоляции внутри стиральной машины, фаза попала на корпус. Если в этот момент Вы прикоснетесь к корпусу машинки, возникнет утечка и УЗО должно сработать. Но именно электронное УЗО не сработает, так как на его электронную плату с усилителем приходит только «фаза» без нуля, питание отсутствует, поэтому возникший ток утечки электронная плата не зафиксирует, отключающий импульс на механизм отключения не поступит, и УЗО не отключится. Для человека такая ситуация крайне опасна. Поэтому, как бы не было печально, при появлении утечки тока в данной ситуации электронное УЗО не сработает.
Еще одна распространенная проблема – это скачки напряжения в сети. Конечно, сейчас многие для защиты устанавливают реле напряжения, но не у всех они стоят. Что представляют собой скачки напряжения — это отклонение от номинального значения. То есть, у вас в розетке вместо 220 Вольт может появиться 170 Вольт или 260 Вольт, или, еще хуже – 380 Вольт. Повышенное напряжение опасно для электронного оборудования, чем собственно и оснащены электронные УЗО и электронные дифференциальные автоматы. Из-за скачков напряжения может выйти из строя электронная плата с усилителем. Внешне все будет выглядеть целым и невредимым, но при возникновении утечки тока ситуация может стать плачевной для человека — из-за поврежденных электронных компонентов УЗО на утечку не отреагирует.
О том, что внутренняя начинка защитного устройства вышла из строя, вы можете и не знать. Поэтому нужно периодически выполнять проверку работоспособности УЗО кнопкой «ТЕСТ». Специалисты рекомендуют выполнять такую проверку не реже одного раза в месяц.
Итак, в сети электроснабжения могут возникнуть различные аварийные ситуации, при которых электронные УЗО или диффавтоматы могут утратить свои защитные функции. Для электромеханических защитных устройств вышеописанные проблемы не опасны, так как для их работы не требуется внешний источник питания. Будет напряжение в сети или нет, электромеханическое УЗО (АВДТ) отработает в любом случае, если появится утечка тока в сети.
Как отличить УЗО электромеханическое от электронного
Внешне эти два устройства очень похожи и многие пользователи, не задумываясь, покупают их без разбора в магазине, даже не подозревая об особенностях. Для того чтобы понимать, какое устройство защитного отключения перед вами находится электронное или электромеханическое, нужно уметь их различать. Думаете, что это под силу только профессионалам? Но уверяю Вас это не так, здесь нет ничего сложного.
Обратите внимание на схему, изображенную на корпусе УЗО
Самый простой и надежный способ — изучить схему, которая изображена на корпусе УЗО. На любом защитном устройстве наносится электрическая схема. Между отображенными схемами на электромеханическом УЗО и электронном есть небольшие отличия.
На схеме электро механического УЗО или дифавтомата отображается дифференциальный трансформатор (через который «продеты» фаза и ноль), вторичная обмотка этого трансформатора, а также поляризованное реле которое соединено со вторичной обмоткой. Поляризованное реле уже непосредственно действует на механизм отключения. Все это отображено на схеме. Нужно только понять, какой фигурой обозначен каждый вышеописанный элемент. Например, электромеханическое УЗО европейского производителя HAGER:
Дифференциальный трансформатор обозначен в виде прямоугольника (иногда это овал) вокруг фазного и нулевого провода. От него отходит виток вторичной обмотки, который связан с поляризованным реле. На схеме поляризованное реле обозначается в виде прямоугольника или квадрата. Реле имеет механическую связь со спусковым механизмом отключения.
Еще здесь обозначена кнопка ТЕСТ со своим сопротивлением (сопротивление позволяет создать утечку 30мА, безопасный порог для жизни человека). Как видите, в электромеханическом УЗО нет никаких электронных плат и усилителей. Конструкция состоит из одной механики.
Теперь рассмотрим электронное УЗО. Для примера, электронный дифавтомат на 16А, 220В, с током утечки 30 мА.
Как видно из схемы, на корпусе электронного дифавтомата обозначено практически все тоже самое, что и на электромеханическом защитном устройстве.
Но, если присмотреться, то можно увидеть, что между дифференциальным трансформатором и поляризованным реле есть дополнительный элемент в виде прямоугольника с буквой «А», обозначение I>. Это та самая электронная плата с усилителем. Кроме того, видно, что к этой плате подходят два провода «фаза» и «ноль» (обозначены на рисунке зеленым цветом снизу). Это как раз и есть тот внешний источник питания, который необходим для полноценной работы такого типа УЗО. Не будет питания, не будет работать и УЗО. Не зависимо от того есть утечка или нет.
Итак, для срабатывания электромеханического УЗО необходима лишь утечка тока, для срабатывания электронного УЗО – необходима утечка тока и напряжение в сети. Мы же настоятельно Вам рекомендуем приобретать УЗО или диффавтомат именно электромеханического типа.
Узо электронное или электромеханическое — что выбрать
Для защиты от утечек тока применяются выключатели дифференциального тока, в народе их попросту называют УЗО. Сегодня таким устройством никого не удивишь. Многие их устанавливают в своих щитах и это правильно.
Всем привет, на связи электрик в доме. В сегодняшней статье хочу рассмотреть тему УЗО, а именно какие бывают разновидности УЗО по внутреннему исполнению. Все что здесь будет написано относится также и к дифавтоматам так как все знают что УЗО является их неотъемлемой частью.
На написание данной статьи меня натолкнул один случай в магазине электротоваров. Мне нужен был дифавтомат для одной халтурки, я остановился на АВДТ фирмы IEK. На вопрос продавцу какой тип узо электронное или электромеханическое используется внутри, продавец мягко говоря плавал. Хотя для опытных электриков это определить вообще не проблема продавец консультант мне так и не ответил, а лишь поддакивал и во всем соглашался со мной.
Мне стало очень любопытно многие ли смогут, как говорится сходу отличить узо электромеханическое от электронного. Поэтому я считаю своим долгом осветить данный вопрос по полной программе.
В чем отличие электромеханического узо от электронного
Как вы уже догадались УЗО и дифавтоматы по своему внутреннему исполнению делятся на два вида: электромеханические и электронные. Сразу хочу отметить, что тип внутреннего исполнения ни как не влияет на рабочие параметры и технические характеристики. У многих сразу возникает вопрос так в чем же их отличие?
УЗО электромеханического типа сработает в любом случае, если на поврежденном участке появится ток утечки, не зависимо от напряжения сети. Основным рабочим органом электромеханического УЗО является дифференциальный трансформатор (тороидальный сердечник с обмотками). Если на поврежденном участке возникла утечка, то во вторичной обмотке этого трансформатора наводится напряжение для работы поляризованного реле, что в свою очередь приводит к срабатыванию механизм отключения.
Электронные УЗО срабатывают при наличии утечки тока на поврежденном участке и наличии напряжения в сети. То есть для полноценной работы устройству защитного отключения электронного типа необходимо внешний источник питания. Это связано с тем, что основным рабочим органом электронных УЗО является электронная плата с усилителем. И без внешнего питания эта плата работать не будет. Откуда берется источник питания? Внутри УЗО нет ни каких батареек и аккумуляторов. А напряжение для питания электронной платы с усилителем поступает от внешней сети. Есть в сети 220 В — УЗО сработает! Если напряжения в сети нет, значит защитное устройство не сработает.
Основная суть я думаю понятна в чем отличие электромеханического узо от электронного. Для работы первого необходимо лишь утечка тока, для работы второго необходима утечка тока и напряжение в сети.
Теперь разберемся с вопросом как по вашему, насколько важно чтобы защитное устройство сохраняло свою работоспособность при отсутствии напряжения и важно вообще это или нет.
Уверен, что многие пользователи ответят приблизительно так «Если напряжение в сети есть электронное УЗО будет работать. Если напряжения в сети нет, тогда зачем ему вообще работать, ведь напряжения в сети нет, значит и утечки тока браться неоткуда». Оно конечно так, но это как говорится палка с двух концов.
Какие вы знаете аварийные ситуации, когда в доме или квартире может пропасть напряжение или как в народе говорят «нет света».
Ну первое что приходит на ум это ремонтные работы. Бригада рабочих выполняет профилактические или восстановительные работы и в целях безопасности отключили автоматы и рубильники где то в ТП (трансформаторной подстанции).
Второе что мне близко как энергетику это аварийные отключения в сети. Да в вашу розетку напряжения 220 Вольт по двум проводам поступает не прямо из тепловой или атомной станции. Электроэнергия вырабатывается на эл.станциях и передается к потребителям через множество трансформаторов и сотни км линий электропередач. На каждом таком участке возникают повреждения, что в свою очередь сказывается на потребителях.
Что еще приходит ну ум? Еще одна очень распространенная проблема отгорание нулевого провода в щите. Вся аппаратура будет без признаков жизни, все сигнальные приборы (сигнальные лампы, если есть) будет свидетельствовать, что напряжения в сети нет. Однако фаза не куда не делась! Опасность поражения током сохраняется. Представим, что в такой ситуации возникло повреждение изоляции внутри стиральной машинки, фаза попала на корпус.
Если в этот момент Вы прикоснетесь к корпусу машинки, возникнет утечка и УЗО должно сработать. Но в этом случае электронное защитное устройство не сработает, так как на его электронную плату с усилителем приходит только «фаза». Источник питания отсутствует и возникший ток утечки электронная плата не зафиксирует, отключающий импульс на механизм отключения не поступит и УЗО не отключится. Для человека такая ситуация крайне опасна. Поэтому как бы не было печально при появлении утечки тока в данном случае электронное УЗО не сработает.
Хотите верьте хотите нет но меня самого постиг этот случай. Пару дней назад в квартире стал кратковременно пропадать свет. Пропадет примерно на полчаса и появляется. Я первым делом подумал, что кто-то проводит какие-нибудь работы. Но когда, однажды возвращаясь, домой я увидел, что в этажном щите у всех соседей свет есть (на счетчиках индикация светится), а у меня одного счетчик спит, понял что проблема есть и ее нужно решать.
После анализа щитка выявил следующую проблему – отгорел ноль от корпуса щита. Да, да именно ноль, причем болт на который был прикручен провод приварился настолько сильно что я не смог его открутить, пришлось садить на другой. Электронное УЗО у меня конечно не установлено, но дело как говорится случая и факт остается фактом.
Еще одна распространенная проблема это скачки напряжения в сети. Конечно, сейчас многие для защиты устанавливают реле напряжения, но не у всех они стоят. Что представляют собой скачки напряжения — это отклонение от номинального значения. То есть у вас в розетке вместо 220 Вольт может появится 170 Вольт или 260 Вольт или еще хуже 380 Вольт.
Повышенное напряжение опасно для электронного оборудования, чем собственно и оснащены электронные УЗО и дифференциальные автоматы. Из-за скачков напряжения может выйти из строя электронная плата с усилителем. Внешне все будет выглядеть целым и невредимым но при возникновении утечки тока ситуация может стать плачевной для человека — из-за поврежденных электронных компонентов УЗО на утечку не отреагирует.
О том, что внутренняя начинка защитного устройства вышла из строя, вы можете и не знать. Поэтому нужно периодически выполнять проверку работоспособности УЗО кнопкой «ТЕСТ». Специалисты рекомендуют выполнять такую проверку не реже одного раза в месяц.
Подведем итоги данного раздела и выделим следующее, в сети электроснабжения могут возникнуть различные аварийные ситуации, при которых электронные УЗО или дифавтоматы могут утратить свои защитные функции.
Для электромеханических защитных устройств вышеописанные проблемы не опасны, так как для их работы не требуется внешний источник питания. Будет напряжение в сети или нет электромеханическое УЗО (АВДТ) отработает в любом случае, если появится утечка тока в сети. Внутри них нет электронных компонентов, которые могут повредиться в результате скачков напряжения.
Внешне эти два устройства очень похожи и многие пользователи, не задумываясь, покупают их без разбора в магазине, даже не подозревая об особенностях. Поэтому в следующем разделе мы рассмотрим, как отличить узо электромеханическое от электронного.
Как отличить узо электромеханическое от электронного
Для того чтобы понимать какое устройство защитного отключения перед вами находится электронное или электромеханическое нужно уметь их различать. Многим покажется это трудным, и они скажут, что это под силу только профессионалам. Но уверяю Вас это не так, здесь нет ничего сложного. Достаточно лишь знать некоторые нюансы.
Итак, есть несколько способов, как отличить электромеханическое УЗО от электронного. Изучив их, Вы с уверенностью сможете определять, какой тип УЗО перед вами. Сейчас рассмотрим подробно каждый из них.
1.Схема изображенная на корпусе УЗО
Первый способ и самый простой это изучить схему, которая изображена на корпусе УЗО. На любом защитном устройстве наносится электрическая схема. Если научиться читать и распознавать эти схемы можно легко определять не только тип устройства. Кстати говоря, если помните, то в статье о том, как отличить УЗО от дифавтомата мы уже сталкивались с подобными схемами. Если присмотреться, то между отображенными схемами на электромеханическом УЗО и электронном есть небольшие отличия.
На схеме электромеханического УЗО или дифавтомата отображается дифференциальный трансформатор (через который «продеты» фаза и ноль), вторичная обмотка этого трансформатора, а также поляризованное реле которое соединено со вторичной обмоткой. Поляризованное реле уже непосредственно действует на механизм отключения. Все это отображено на схеме. Нужно только понять, какой фигурой обозначен каждый вышеописанный элемент.
Дифференциальный трансформатор обозначен в виде овала вокруг фазного и нулевого провода. От него отходит виток вторичной обмотки, который связан с поляризованным реле. На схеме поляризованное реле обозначается в виде прямоугольника или квадрата (в нашем случае это квадрат). Пунктирная линия от реле означает механическую связь со спусковым механизмом отключения.
Еще здесь обозначена кнопка ТЕСТ со своим сопротивлением (сопротивление позволяет создать утечку рассчитанного номинала). Как видите в электромеханическом УЗО нет никаких электронных плат и усилителей. Конструкция состоит из чистой механики.
Теперь рассмотрим электронное УЗО. Я для примера буду использовать электронный дифавтомат от фирмы IEK марки АВДТ32 С20, с током утечки 30 мА.
Как видно из схемы на корпусе электронного дифавтомата обозначено практически все тоже самое, что и на электромеханическом защитном устройстве.
Но если присмотреться, то можно увидеть что между дифференциальным трансформатором и поляризованным реле есть дополнительный элемент в виде прямоугольника с буквой «А». Это та самая электронная плата с усилителем.
Кроме того видно что к этой плате подходят два провода «фаза» и «ноль». Это как раз и есть тот внешний источник питание, который необходим для полноценной работы такого типа УЗО.
Не будет питание, не будет работать и УЗО. Не зависимо от того есть утечка или нет.
2.Внешний источник питания – тест с помощью батарейки.
Второй способ как отличить узо электромеханическое от электронного немного сложнее первого, так как при себе нужно иметь дополнительные элементы — батарейку и провода для подключения. Вроде ничего сложного, но согласитесь их не всегда удобно применить, особенно если вы находитесь в магазине. На рынке еще могут вам разрешить ими воспользоваться, но в лидирующих магазинах электронной продукции вам точно в этом откажут (ну какой менеджер согласится, чтобы при нем курочили узо или дифы).
Итак, для теста нам понадобится самая обычная заряженная батарейка, любая (пальчиковая, крона и т.п.) У меня под рукой оказалась батарейка типа крона на 9 В.
Берем электромеханическое УЗО, к верхней клемме прикручиваем один проводок, к нижней клемме ТОГО ЖЕ ПОЛЮСА прикручиваем другой проводок. Хочу заметить, что абсолютно не важно к какому из полюсов вы будите прикручивать провода к фазному или к нулевому. Но если сверху вы подключили провод на клемму фазного полюса, то и внизу также нужно подключать провод к фазному полюсу иначе не будет замкнутой цепи.
Теперь включаем наше УЗО (АВДТ) и замыкаем концы торчащих проводов на батарейку. В момент, когда повода замкнутся на клеммы батарейки, через полюс УЗО начнет протекать ток. УЗО должно отключиться.
Если этого не произойдет, поменяйте полярность батарейки, то есть поменяйте местами полюса «+» и «-». Если УЗО отключится, с уверенностью в 200 % можно сказать что оно электромеханического типа.
Электронное УЗО на такой тест ни как не отреагирует, потому что для его срабатывания дополнительно требуется наличие напряжения на электронной плате.
3.Используем постоянный магнит
Включаем УЗО, берем постоянный магнит и водим вдоль корпуса. Под действием магнитного поля во вторичной обмотке дифференциального трансформатора индуцируется ток, срабатывает поляризованное реле и УЗО отключается. Это все произойдет, если защитное устройство электромеханическое.
Этот способ обладает определенной погрешностью, однако имеет право на жизнь. Первое это магнит может быть недостаточно сильный, второе у каждой марки защитного устройства рабочие элементы находятся в разных областях. Что я имею ввиду? Например, у фирмы Schneider Electric дифференциальный трансформатор может располагаться в правой части корпуса, для фирмы ABB в середине корпуса, у IEK это может быть слева. Визуально ведь не видно внутренностей.
Поэтому применяя этот метод для каждой модели защитного устройства нужно «прощупать» область, в которой необходимо водить магнитом. Не всем эту область удается найти и ошибочно можно сделать неправильные выводы.
Понравилась статья — поделись с друзьями!
Отличие электронного УЗО от электромеханического
Здравствуйте, уважаемые гости и читатели сайта «Заметки электрика».
В статье про разновидности и типы УЗО я вкратце упоминал о том, как при покупке УЗО можно отличить принцип его устройства, имеется ввиду, как отличить электромеханическое УЗО от электронного.
В сегодняшней статье я хотел бы остановиться на этом более подробно, а заодно рассказать Вам о преимуществах того или иного типа. Также хочу сказать, что данная статья относится к дифференциальным автоматам и некоторые примеры я буду приводить именно с ними.
Перед прочтением я рекомендую прочитать Вам следующие мои публикации:
Итак, по принципу внутреннего устройства, УЗО и дифавтоматы разделяются на:
- электромеханические
- электронные
Электромеханические УЗО и дифавтоматы срабатывают независимо от наличия напряжения питающей сети.
Рассмотрим для примера устройство и конструкцию электромеханического дифавтомата DS201 C25, 30 (мА) от АВВ.
Снимем верхнюю крышку.
Для его срабатывания достаточно тока утечки, возникающего в поврежденной линии. При этом во вторичной обмотке дифференциального (тороидального) трансформатора возникает ток, который приводит к срабатыванию чувствительного поляризованного реле.
Реле в свою очередь приводит в действие спусковой механизм дифавтомата и он отключается.
Более подробно о принципе работы УЗО и дифавтоматов читайте здесь.
Для срабатывания электронного УЗО или дифавтомата необходимо напряжение, потому что их принцип работы несколько отличается от электромеханических устройств.
В качестве примера рассмотрим электронный дифавтомат АВДТ32 C16, 30 (мА) от IEK.
В корпусе электронного дифавтомата АВДТ32 установлена плата с усилителем, которая реагирует на возникновение малейшего тока во вторичной обмотке дифференциального трансформатора, усиливает его величину и создает импульс для срабатывания встроенного реле.
В данном примере усилитель выполнен на микросхеме. Иногда встречаются усилители на транзисторах.
Дифференциальный трансформатор имеет меньшие размеры, габариты и мощность, чем у электромеханических УЗО и дифавтоматов, потому как нет в этом потребности. Небольшой по величине ток во вторичной обмотке трансформатора усиливается платой усилителя и подается на исполнительное реле, которое в свою очередь действует на спусковой механизм.
Плата с усилителем питается с выводов контролируемой цепи, и если на плате исчезнет напряжение (например, произойдет обрыв нулевого провода), то в таком случае дифавтомат не сработает ни при каких обстоятельствах.
Рассмотрим простейший пример.
Электронный дифавтомат защищает розеточную линию, куда подключена посудомоечная машина. Предположим, что по некоторым причинам в этажном щите произошел обрыв нуля на квартирную группу.
Такая ситуация может случится с каждым, почитайте статью, где я разбирал причины аварийного состояния этажного щита.
Итак, произошел обрыв нуля на одной из квартирной групп. В этот же момент возникла неисправность в посудомоечной машине в виде замыкания фазы на ее корпус, т.е. опасный для жизни потенциал «вышел» на проводящий корпус машинки. Если в такой ситуации человек (не дай Бог) прикоснется к корпусу машинки, то электронный дифавтомат не сработает из-за отсутствия питания его внутренней схемы, а человек получит удар электрическим током.
Про последствия электротравм читайте следующие статьи:
Конечно же, вероятность возникновения приведенного выше примера очень низкая. Нужно чтобы в один момент оборвался и ноль, и произошло замыкание фазы на корпус в электрическом приборе, но тем не менее это нужно учесть.
Продолжим сравнение. Электромеханические устройства имеют более простую и надежную конструкцию. А вот у электронных устройств конструкция более сложная и вероятность ее отказов гораздо больше, например, при импульсных перенапряжениях в сети могут выйти из строя полупроводниковые элементы или микросхема.
Что же выбрать? Электронное УЗО или электромеханическое?
Отсюда напрашивается логический вывод о том, что электронные УЗО и дифавтоматы менее надежны по сравнению с электромеханическими. Но распространены они ни чуть не меньше, т.к. по стоимости они ниже, чем электромеханические. Тем не менее, я все такие рекомендую применять электромеханические УЗО и дифавтоматы.
В настоящее время электронные дифавтоматы снабжают функцией защиты от повышения напряжения, т.е. если у него на выводах напряжение увеличится выше 240 (В), то он автоматически отключится. Примером такого дифавтомата может стать АВДТ-63М от EKF. Но лично я для защиты от повышения напряжения рекомендую использовать специально-предназначенные для этого устройства, например, однофазное реле RV-32A и трехфазное реле напряжения V-protector 380V.
Как отличить электромеханическое УЗО от электронного?
Как же отличить электромеханическое УЗО от электронного? Это довольно частый вопрос, который мне задают не только читатели сайта, но и обычные граждане, и даже коллеги электрики. К сожалению, большинство продавцов в магазинах и торговых центрах тоже не знают ответ на этот вопрос.
Итак, существует несколько способов. Прошу заметить, что все приведенные способы проводятся с отключенными от сети устройствами.
1. Схема на корпусе УЗО
Самый первый, но не простой способ — это рассмотреть схему, изображенную на корпусе УЗО.
У электромеханических УЗО на схеме изображен дифференциальный трансформатор, вторичная обмотка которого напрямую соединена с поляризованным реле. Реле обычно обозначается прямоугольником или квадратом. От него пунктирной линией идет механическая связь со спусковым механизмом УЗО. Никаких связей (линий) с питающим напряжением сети на схеме нет.
Вот для примера электромеханическое УЗО ВД1-63 16 (А), 30 (мА) от IEK.
Еще пример электромеханического УЗО ВД1-63 16 (А), 30 (мА) от компании TDM.
Как видите, схемы абсолютно одинаковые.
У электронных УЗО на схеме всегда изображена плата с усилителем в виде треугольника (это условное обозначение усилителей по ГОСТу). Также Вы заметите там, линии откуда взято питание для этой платы: с фазы и нуля.
Вот для примера электронный дифавтомат АВДТ32 C16, 30 (мА) от IEK.
Также на всех схемах изображена кнопка «Тест» и схема ее подключения.
Боюсь, что первый способ отличить один вид устройства от другого не совсем простой, и без соответствующего опыта можно легко ошибиться. Поэтому предлагаю перейти к следующим способам, которые дадут 100% правильный результат.
2. Тест батарейкой
Для этого способа нужны элементы питания, или простым языком, батарейки. Можно использовать хоть пальчиковую «АА» 1,5 (В), хоть R14 1,5 (В), хоть «Крону» 9 (В), в общем любые батарейки, которые Вы найдете у себя под рукой — только чтобы они были заряженные.
Включим УЗО или дифавтомат. Присоединим к одному из его полюсов два провода. Например, на вход (1) один провод, а на выход (2) этого же полюса — другой провод.
Затем соединим эти два провода с клеммами батарейки: «+» к выводу (1), «-» к выводу (2).
При замыкании проводов на клеммы батарейки через замкнутые контакты полюса начинает проходить ток разряда батарейки. Во вторичной цепи дифференциального трансформатора индуцируется скачок тока, который приводит к срабатыванию поляризованного реле. Реле действует на спусковой механизм и УЗО отключается.
Если УЗО отключилось, то значит оно электромеханическое, если же не отключилось, то измените полярность батарейки и повторите проверку.
Если в этот раз УЗО отключилось, то значит оно электромеханическое, если же опять не отключилось, то значит оно электронное и не срабатывает по причине отсутствия напряжения на плате усилителя.
3. Постоянный магнит
Возьмите постоянный магнит средних размеров и преподнесите его к корпусу УЗО или дифавтомата.
Естественно, что УЗО должно быть включено. Немного поводите магнитом вдоль передней панели и боковой части корпуса.
Если УЗО сработает, то оно является электромеханическим, если же нет, то электронным.
По традиции смотрите видеоролик по материалу данной статьи:
P.S. На этом все. Надеюсь, что данная статья будет для Вас полезна. Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Отличия электронного и электромеханическое УЗО
Выключатели дифференциального тока, зачастую называемые просто УЗО, предназначены для защиты от утечек тока. Такими устройствами вряд ли кого-то можно удивить, ведь они устанавливаются практически в каждом щитке. Большинство владельцев квартир и домов, даже далеких от электротехники, поняли, что установка УЗО — необходимое условие безопасности и стабильности электроснабжения. Но далеко не все догадываются, что устройства производятся разными не только во внешнем, но и внутреннем исполнении. Читайте также статью ⇒ Что такое УЗО.
Как отличить устройства между собой?
УЗО выпускаются в двух исполнениях — электронном и электромеханическом. Различия между двумя видами устройств принципиальны. Отличить их можно с помощью трех простых методик.
По изображенной на корпусе электросхеме
Такую методику определения вида защитных приборов можно назвать самой простой, для нее не требуется использование каких-либо приспособлений или инструмента. Главное — запомнить имеющиеся в схемах различия.
На корпусе любой модели УЗО или дифавтомата можно найти принципиальную схему внутреннего устройства прибора. По своей сути схемы различаются на два основных вида — электромеханического и электронного. Каждая схема имеет свои отличия, но они не значительны.
Если кратко об устройстве и принципе работы, то основу дифавтомата и электромеханического УЗО составляют поляризованное реле и дифференциальный трансформатор. При образовании в контролируемо цепи тока утечки во вторичной обмотке трансформатора возникает дифференциальный ток, приводящий к сработке реле. При сработке реле воздействует на механизм спуска, приводящий к выключению защитного прибора.
На схеме реле и дифференциальный трансформатор обозначаются символами прямоугольника и овала соответственно
Совет №1: Таким образом, необходимо отыскать на схеме значок поляризованного реле дифференциального трансформатора.
Последний схематично обозначается значком овальной формы вокруг нулевого и фазного проводников, реле наносится в форме квадрата либо прямоугольника. Связь трансформатора и реле осуществляется посредством вторичной обмотки, изображаемой в виде сплошной линии. Пунктиром показывается механическая связь с механизмом спуска. Также на схеме часто можно увидеть кнопку «Тест», но в некоторых моделях она не предусмотрена конструкцией.
Для дифавтоматов и электронных УЗО предусмотрено другое строение и, соответственно, иная схема. Из самого название устройств можно сделать вывод, что управление работой приборов осуществляется посредством электронной платы.
Если в подлежащей контролю цепи возникает ток утечки, то во вторичной обмотке дифтрансформатора благодаря ему возникает дифференциальный ток. Электронная плата определяет его наличие и образует импульс, вызывающий сработку реле. От реле поступает команда на спусковой механизм, отключающий защитное устройство.
Элементы, входящие в состав электронных плат намного компактнее, в связи с чем электронные дифавтоматы и УЗО обладают гораздо более компактными габаритами. В продаже также можно встретить и одномодульные электронные защитные приборы, имеющие размеры не больше однополюсного автомата.
На схеме, кроме дифтрансформатора, также нужно отыскать и электронную плату усилителя, который обозначается в виде треугольника. Так как ни одна плата не способна работать без питания, на схеме обязательно показываются и дополнительные линии.
Электронная плата усилителя обозначается на схеме, находящейся на корпусе устройства, в виде треугольника
Из вышеописанного можно сделать следующие выводы:
- При наличии на схеме овала, расположенного на фазным и нулевым проводниками (дифтрансформатор) и квадрат (реле), между собой сопряженные сплошной тонкой линией, то мы имеем дело с электромеханическим дифавтоматом или УЗО.
- Если на схеме имеется овал над фазным либо и нулевым проводниками (дифтрансформатор) и квадрат, обозначающий реле, между собой сопряженные сплошной линией, проходящей через треугольник (плата усилителя), к которому приходит пара питающих линий, то дело мы имеем с электронным дифавтоматом либо УЗО.
При помощи батарейки
Определение электромеханического и электронного защитного прибора при помощи элемента питания можно назвать более сложным, чем простое рассматривание схемы. Для работы потребуются:
- заряженная батарейка;
- отвертка;
- пара проводов.
К тому же, если определять тип УЗО или дифавтомата в магазине, вряд ли продавец захочет дать в руки покупателю товар для подключения к нему чего либо и проведения непонятных экспериментов. Плюс к этому большинство приборов реализуются в заклеенных коробках, которые продавец также не захочет вскрывать.
Электронная плата усилителя обозначается на схеме, находящейся на корпусе устройства, в виде треугольника
Такой способ все же имеет право на существование. Для примера используется АВДТ производства известной компании Schneider Electric.
Никаких сложностей работа не вызовет даже не относящих себя к большим специалистам в области электрики и электротехники людей.
К нулевому полюсу сверху прикручивается первый провод, а к нижнему полюсу — второй. Далее потребуется включить УЗО или дифавтомат, для чего необходимо взвести управляющий рычаг.
Оставшиеся свободными концы проводов замыкаются на заряженном элементе питания, тип которого не принципиален. При отключении устройства можно сделать вывод, что оно электромеханическое. Если прибор отключился, то следует поменять полярность соединения проводов на батарейке и попробовать вновь выполнить замыкание. Если после этого произошло отключение прибора, то оно точно электромеханического типа.
Соединение защитного устройства и элемента питания посредством пары подключенных к нему проводов
По какой причине электромеханические дифавтоматы и УЗО срабатывают от обычной батарейки? Дело в том, что попав в замкнутый контур элемент питания разряжается, выпуская ток в один полюс. Поэтому во вторичной обмотке дифтрансформатора образуется дифференциальный ток, которого вполне достаточно для сработки поляризованного реле.
Ели не произошло отключения прибора, то можно сделать вывод, что он электронный. По какой причине не отключаются приборы такого типа? Дело в следующем: для функционирования платы усилителя требуется питание, которое в данный момент отсутствует. Потому усилитель не способен подать импульс на реле для приведения в действие механизма спуска. Читайте также статью ⇒ Выбор УЗО: основные критерии.
Проведение такого эксперимента возможно для любого полюса — и фазного, и нулевого. Электромеханическое устройство выключится в любом случае.
При помощи постоянного магнита
При определении типа защитного прибора с использованием магнита также нет ничего сложного. Загвоздка может возникнуть лишь в том, чтобы найти постоянный магнит требующихся размеров (треть или четверть от размеров устройства).
Действия выполняются в следующей последовательности:
- в руки берутся дифавтомат или УЗО;
- устройство включается путем возведения рычага;
- магнит обводится в непосредственной близости от передней панели и сбоку прибора круговыми движениями.
Для проведения проверки нужно подобрать подходящий по размерам постоянный магнит
Если при выполнении круговых движений устройство не отреагировало отключением, то делается вывод, что оно электромеханическое.
Совет №2: Такой способ нельзя назвать точным и дающим стопроцентную гарантию, так как для образования дифференциального тока мощность магнита может быть недостаточной.
Магнит следует подбирать также и таким, чтобы его мощности было достаточно для проведения эксперимента
Преимущества и недостатки приборов
Сравнение достоинств и недостатков защитных устройств обоих типов удобно выполнить в табличной форме.
Параметр устройства | Электронное | Электромеханическое |
Стоимость | выше | меньше |
Конструкция | упрощенная | сложная |
Чувствительность | повышенная | пониженная |
Функционирование при обрыве «нуля» | нет | да |
Функционирование при значительном падении напряжения | нет | да |
Вероятность отказа при импульсных перенапряжениях | выше | ниже |
В качестве итога следует отметить, что наиболее подходящим вариантом для монтажа в квартирный электросчетчик является все же электромеханический дифавтомат либо УЗО. Именно такой тип устройства широко представлен на современном отечественном рынке.
Оцените качество статьи:
Как отличить электромеханическое УЗО от электронного?Эта статья будет интересна людям которые привыкли тщательно разбираться в вопросах безопасности. В ней мы разберем принцип работ УЗО (электронное или электромеханическое) вне зависимости от типа УЗО, а так же, как отличить к какому из принципу работы относится устройство. Электронное УЗО:Назначение: защита людей от поражения электрическим током утечки. Электромеханическое УЗО:Назначение: защита людей от поражения электрическим током утечки. Узнаем какое УЗО: электронное или электромеханическое.Перед тем как вы отправитесь в магазин, чтобы купить электромеханическое УЗО, обязательно, ознакомьтесь, как узнать, какой принцип работы этого защитного устройства не разбирая его корпус. Способ 1: Читаем схему УЗОВсе устройства защитного отключения имеют схематичное обозначение технической схемы внутреннего механизма. Такая схема должна быть указана на корпусе любого УЗО, не важно, электронное оно или электромеханическое, так что при покупке УЗО внимательно исследуйте внешний вид интересующего вас устройства. | Для примера мы специально взяли УЗО одного производителя, внешне похожих друг на друга, чтобы наглядно показать визуальную схожесть различных по принципу работы устройств. Способ 2: Проверка принципа работы УЗО батарейкойПроверка батарейкой УЗО заключается в подключении на один из полюсов устройства элемента питания. Для этого нам понадобится батарейка и электрические провода. |
Электронное или механическое? Три способа, как определить тип УЗО или АВДТ | IEK GROUP
Всё многообразие устройств дифференциальной защиты, которые выпускает IEK GROUP, можно разделить на две большие группы по принципу действия – электромеханические и электронные.
Давайте выясним, как быстро и просто отличить один тип от другого. Ведь часто бывают ситуации, когда даже продавец в магазине не знает, что сказать по данному вопросу.
Сразу стоит уточнить, что термины типа «электромеханическое УЗО» и «электронное УЗО» не совсем корректны, хотя и используются везде из-за своей лаконичности и удобства, в том числе и в этой статье. По новому ГОСТ IEC 61008-1-2020 эти названия будут звучать так: «выключатель дифференциального тока (ВДТ), функционально не зависящий от напряжения сети» и «выключатель дифференциального тока (ВДТ), функционально зависящий от напряжения сети».
Итак, если хотите научиться отличать механические устройства защиты от электронных, читайте нашу статью!
Способ первый: Смотрим на схему
На всех УЗО или АВДТ IEK® на передней панели изображена электрическая схема, которая показывает функционал устройства. Внутри электронных устройств установлена плата усилителя-компаратора, требующая внешнего питания. Питающие провода, идущие на усилитель, всегда показаны на схеме. На схеме электромеханического УЗО или АВДТ таких проводов нет, поскольку они не имеют питания от сети.
Внимание! Не все производители так подробно указывают схему на маркировке, т.к. ГОСТ IEC 61008-1-2020 этого не требует.
Чтобы сразу стало понятно, лучше один раз увидеть:
Провода, отмеченные на схеме, однозначно говорят о том, что справа – электронное устройство.
Вопрос для опытных читателей, которые знают, что такое тип дифференциального отключающего тока: где на рисунке устройство типа А, а где АС? Пишите в комментариях.
Способ второй: Проверяем работу без питания
Если после первого способа нужна дополнительная проверка, можно воспользоваться практическим методом, который развеет все сомнения. Он также основан на принципиальном отличии двух типов устройств дифзащиты – зависимости работы от наличия питания.
Первый способ проверки, о котором мы писали выше – чисто теоретический, второй – практический. Используя его, мы получаем такие возможности:
- Проверка работоспособности конкретного экземпляра устройства.
- Определение типа УЗО или АВДТ по конструкции (зависимости от напряжения питания).
В ходе теста нужно создать дифференциальный ток, не подавая питание на устройство. Электромеханический аппарат будет исправно отключаться при наличии дифференциального тока достаточной величины, даже если на его входе нет питания (нуля или фазы). А вот электронный в таких условиях не сработает.
Для проведения теста необходим любой источник напряжения, обеспечивающий ток больше номинального дифференциального отключающего тока УЗО или АВДТ. Тестовое подключение должно быть таким, чтобы ток протекал через один полюс устройства. Второй полюс остается неподключенным.
Например, можно использовать обычное сетевое напряжение, включая последовательно с одним из полюсов УЗО (АВДТ) лампу накаливания либо другую ограничивающую нагрузку. Дифференциальный ток, который будет при этом протекать через УЗО, можно посчитать по общеизвестной формуле I = P / U. Например, для лампочки накаливания мощностью Р = 40 Вт и напряжении питания U = 230 В тестовый ток будет порядка 170 мА. Таким током можно проверить УЗО или АВДТ с номинальным дифференциальным отключающим током 10, 30 и 100 мА.
Максимальное время отключения составляет доли секунды. Более точно время отключения УЗО в зависимости от тока можно узнать из ГОСТ IEC 61008-1-2020 (табл.1).
Логично, что при использовании переменного напряжения будет два варианта проверки – через фазный и через нейтральный полюс:
В результате тестирования УЗО при схемах включения, показанных на рисунке выше, можно легко отличить электронное устройство от электромеханического. Электронные УЗО не сработают в любом случае, а электромеханические УЗО во всех случаях будут выключаться. То же самое относится и к АВДТ.
Проверка от батарейки: не рекомендуем!
На многих сайтах приводится способ проверки УЗО и АВДТ при помощи пальчиковой батарейки напряжением 1,5 В. Обычно предлагается 4 варианта проверки:
Также этим тестом предлагается определять тип дифференциального отключающего тока (А или АС).
Однако специалисты компании IEK GROUP, производителя УЗО и АВДТ с многолетним опытом, крайне не рекомендуют проверять данные устройства при помощи любых источников постоянного тока. И вот почему:
При подключении батарейки срабатывание УЗО происходит по причине возникновения импульса тока определенной величины. Но даже кратковременное протекание постоянного тока намагничивает сердечник дифференциального трансформатора и изменяет характеристику срабатывания УЗО. Кроме того, при большом значении импульса тока возможно размагничивание расцепителя и полная потеря работоспособности устройства.
Результат теста (срабатывание или несрабатывание) будет зависеть от силы импульсного тока, качества дифференциального трансформатора, а также его внутренней конструкции. Также от конструкции конкретной модели УЗО зависит, будет ли «пройден» тест на определение типа УЗО (А или АС). Электромеханические УЗО (АВДТ) с типом дифференциального тока АС, вопреки распространенному в интернете мнению, могут срабатывать при любой полярности проверочного напряжения. Это зависит от конструктива (внутренней схемы) конкретного устройства и не говорит о его неисправности.
Делая выводы по этому способу, можно сказать следующее. Тест подтверждает, что электронное устройство не обеспечит защиту при обрыве нейтрального (нулевого) проводника. В случае с переменным тестовым напряжением при прохождении тока через любой из полюсов электромеханический аппарат (типа А или АС) сработает в любом случае. Электронное УЗО или АВДТ не сработает при таком подключении ни с переменным, ни с постоянным источником напряжения.
Стоит сказать, что при пропадании сетевого напряжения с любого из входов кнопка «Тест» работать не будет. Несмотря на это, как было сказано выше, электромеханическое УЗО (АВДТ) останется полностью работоспособным.
Способ третий: Реакция на магнит
Для третьего способа нужен достаточно сильный магнит. При воздействии магнитного поля на дифференциальный трансформатор в его обмотках будет наводиться ток. Если УЗО или АВДТ электромеханические, этого тока будет достаточно для срабатывания. Если устройство электронное – увы, ничего не произойдёт, поскольку для его работы нужно питание.
Этот способ наименее надёжен, поскольку зависит от мощности магнита и от конструкции аппарата. К тому же, если магнит будет слишком сильным, подобный народный метод может быть опасен для УЗО, т.к. размагнитится расцепитель, и устройство будет испорчено. Плюс способа – он подойдёт для быстрой массовой проверки.
Выводы
Лучший «народный» способ найти отличия между электронным и электромеханическим типом УЗО, а также между УЗО типа А и АС – посмотреть на маркировку, на которой согласно стандарту должен быть указан тип. Если маркировка стерлась, то это заводской брак, подлежащий замене.
Также можно проверить работу устройства и уточнить его конструктив (зависимость от наличия напряжения питания), используя сетевое напряжение 220/230 В с ограничивающим сопротивлением.
При проверке УЗО или АВДТ при помощи источника постоянного тока (батарейки) и постоянного магнита результаты теста могут быть неточными, но это не главное. В результате таких тестов проверенное устройство может оказаться небезопасным в эксплуатации, поскольку у него могут непредсказуемым образом измениться характеристики. Прежде всего это относится к главному параметру – номинальному отключающему дифференциальному току.
Поэтому, если возникла острая необходимость проверки УЗО или АВДТ, необходимо использовать специальные приборы, например ПЗО-500 Про, или SONEL MRP-200, которые позволяют формировать различные виды испытательного тока для типов АС и А.
А как вы отличаете электромеханическое УЗО и АВДТ от электронного? Делитесь в комментариях!
Хотите узнать, чем отличаются ВДТ от АВДТ? Читайте на нашем канале.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.
Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie. - Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г.,
браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере. - Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.
Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie
потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт
не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к
остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
(PDF) Эффект Узо для выборочной сборки кластеров молибдена в наномраморы или нанокапсулы с повышенной активностью HER
Рисунок 4: Кривые поляризации для GCE без покрытия (черный), для GCE, поддерживающего наноразмерные шарики
(синий), кластер 1 (синий пунктир) ), нанокапсулы (красный) и кластер 2 (красный пунктир) в Ar-
очищенном 1M растворе KNO3 pH 7, (a) HER (b) OER
В отличие от GCE, эталонная плотность тока
из 10 мА / см
2
легко достигаются для потенциалов, равных примерно
0.95 В для всех видов кластера (
Рисунок 4a
). Это соответствует перенапряжению
примерно на 500 мВ, что является очень многообещающим для
по сравнению с перенапряжениями, о которых сообщалось для молекулярных катализаторов
в нейтральной среде.
33
Примечательно, что потенциал восстановления
положительно сдвинут на 100 мВ для нанокапсул
по сравнению с 2. Несмотря на относительно низкую электроактивность OER
, все виды кластеров способствуют окислению воды
до O
2
с более высокой плотностью тока по сравнению с
голый GCE (
Рисунок 4b
).
В заключение, наночастицы, содержащие исключительно кластеры молибдена
, были получены смещением растворителя.
Наномарблы против нанокапсул могут быть выборочно получены с помощью
соответствующий выбор кластера: более гидрофобные
разновидностей Cs
2
[Mo
6
Br
i
8 9000 a
6
] осаждается в фазе растворителя,
, тогда как более полярное соединение (NH
4
)
2
[Mo
6
Br
i
8
NCS)
a
6
]
адсорбирует на границах раздела, стабилизируя капли с высоким содержанием растворителя.Химический анализ
с использованием EDS и рамановской спектроскопии
в сочетании с квантово-химическими расчетами четко указывает на полный гидролиз апикальных лигандов
в случае
Cs
2
[Mo
6
Br
i
8
Br
a
6
]. Напротив, гидролиз
(NH
4
)
2
[Mo
6
Br
i
8
(NCS)
a
000]
000] не соблюдается, но нельзя полностью исключить
.В этой работе мы обобщаем стратегию сборки self-
, основанную на «эффекте Узо», чтобы сформировать
нанокапсул из наноразмерных неорганических соединений. И наночастицы
, и нанокапсулы демонстрируют интересную электрокаталитическую активность
по отношению к расщеплению воды в мягких условиях
. В частности, формирование кластера в нанокапсулы
значительно увеличивает HER.
Подтверждение
Авторы благодарят платформы ScanMat, THEMIS (TEM), SIR
(Raman) и Caphter (люминесценцию), а также C.Ройланд.
Thierry Roisnel из CDIFX благодарит за помощь в сборе данных дифракции рентгеновских лучей на монокристаллах
и В. Гарсиа за графическое 3D-моделирование
. Этот проект был инициирован Ф.С.
Примечания и ссылки
1
R. Ramirez-Tagle, R. Arratia-Pérez, Chem. Phys. Lett., 2008,
460
, 438.
2
K. Kirakci, P. Kubát, M. Dušek, K. Fejfarová, V. Šícha, J. Jiří, K.
Lang, Eur.J. Inorg. Chem., 2012,
19
, 3107.
3
C. Neaime, M. Amela-Cortes, F. Grasset, Y. Molard, S.
Cordier, B. Dierre, M. Mortier, T. Takei, K. Takahashi, H.
Haneda, et al., Phys. Chem. Chem. Phys., 2016,
18
, 30166.
4
S. Akagi, S. Fujii, N. Kitamura, Dalton Trans., 2018,
47
, 1131.
5
K Costuas, A. Garreau и др., Phys.Chem. Chem. Phys., 2015,
17
, 28574.
6
C. G. Morales-Guio, X. Hu, Acc. Chem. Res., 2014,
47
, 2671.
7
Воротникова Н.А., Воротников Ю.А. и др., Неорг. Chem.,
2018,
57
, 811.
8
Евтушок Д.В., Воротникова Н.А. и др., New J. Chem., 2017,
41
, 14855.
9
Д.В. Евтушок, А.Р. Мельников и др., Dalton Trans., 2017,
46
,
11738.
10
P. Bauduin, S. Prevost, P. Farràs, F. Teixidor, O. Diat, T Zemb,
Angew. Chem. Int. Ed., 2011,
50
, 5298.
11
KL Thompson, M. Williams, SP Armes, J. Colloid Interface
Sci., 2015,
447
, 217.
12
С. Кордье, Ф. Грассе, Ю. Молард, М. Амела-Кортес, Р.
Boukherroub, S. Ravaine, M. Mortier, N. Ohashi, N. Saito, H.
Haneda, J. Inorg. Органомет. Polym. Mater., 2015,
25
, 189.
13
Y. Molard, Acc. Chem. Res., 2016,
49
, 1514.
14
Б. Ян, Х. Чжоу, А. Лачгар, Неорг. Chem., 2003,
42
, 8818.
15
M. A. Moussawi, N. Leclerc-Laronze и др., J. Am. Chem. Soc.,
2017,
139
, 12793.
16
А. О. Соловьева, Ю. А. Воротников и др., J. Mater. Chem. Б,
2016,
4
, 4839.
17
Н.А. Воротникова, М.В. Еделева, О.Г. Курская, К.А. Брылев,
А.М. Шестопалов, Ю.В. Миронов, А.Ю. Сазерленд, М.А. Polym. Int., 2017,
66
, 1906.
18
K. Kirakci, V. Šícha, J. Holub, P. Kubát, K. Lang, Inorg.Chem.,
2014,
53
, 13012.
19
Е.В. Свеженцева, А.О. Соловьева и др., New J. Chem.,
2017,
41
, 160003
20
K. Kirakci, J. Zelenka, M. Rumlová, J. Martinčík, M. Nikl, T.
Ruml, K. Lang, J. Mater. Chem. B, 2018,
6
, 4301.
21
E. Lepeltier, C. Bourgaux, P. Couvreur, Adv. Препарат Делив. Ред.,
2014,
71
, 86.
22
L. Leclercq, A. Mouret, S. Renaudineau, V. Schmitt, A. Proust,
V. Nardello-Rataj, J. Phys. Chem. B, 2015,
119
, 6326.
23
A. Prasetyanto, A. Bertucci, D. Septiadi, R. Corradini, P.
Castro-Hartmann, L. De Cola, Angew. Chem. Int. Ed., 2015,
55
, 3323.
24
B. Naskar, O. Diat, V. Nardello-Rataj, P. Bauduin, J. Phys.
Chem. C, 2015,
119
, 20985.
25
F. Sciortino, G. Casterou, P.-A. Элиат, М.-Б. Troadec, C.
Gaillard, S. Chevance, ML Kahn, F. Gauffre, ChemNanoMat,
2016,
2
, 796.
26
F. Sciortino, M. Thivolle, ML Kahn, C . Gaillard, S. Chevance,
F. Gauffre, Soft Matter, 2017,
13
, 4393.
27
F. Ganachaud, JL Katz, ChemPhysChem, 2005,
6
, 209.
28
Обер Т., Бурель А., М.-А. Эсно, С. Кордье, Ф. Грассе, Ф.
Кабельо-Уртадо, Дж. Азар. Mater., 2012,
219–220
, 111.
29
K. Kirakci, P. Kubát, J. Langmaier, T. Polívka, M. Fuciman, K.
Fejfarová, K. Lang, Dalton Trans., 2013,
42
, 7224.
30
K. Kirakci, P. Kubát, M. Kučeráková, V. Šícha, H. Gbelcová, P.
Lovecká, P. Grznárová, T .Ruml, K. Lang, Inorganica Chim.
Acta, 2016,
441
, 42.
31
S. Anantharaj, SR Ede, K. Sakthikumar, K. Karthick, S.
Mishra, S. Kundu, ACS Catal., 2016,
6
, 8069.
32
M. Feliz, M. Puche, P. Atienzar, P. Concepción, S. Cordier, Y.
Molard, ChemSusChem, 2016,
9
, 1963
Золотой греческий FAQ | Golden Greek
Что означает «вейпинг»?
Что мы называем «модом»?
Что такое телескопический мод?
В чем разница между электронными и механическими модами?
Как должен быть сделан правильный механический мод?
Какие бывают механические модификации?
Что мы называем «электромеханическим» модом?
Какие бывают электронные моды?
Как правильно очистить контакты механических или электронных модов?
Что такое распылитель?
Что мы называем «капельным наконечником»?
Что мы называем «жидким контролем»?
Что мы называем «контроль воздуха»?
Что мы называем «заправочной крышкой»?
Что мы называем «коллекторным баком»?
Как изменить воздух, который попадает на провод внутри распылителя?
Какие бывают форсунки?
Почему мой распылитель не работает?
Для получения ответов / информации о продуктах Golden Greek посетите страницу «GG FAQ».
Что означает «вейпинг»?
Вейпинг — это новая тенденция, при которой люди курят, а не курят, что означает, что они испаряют жидкость с помощью комбинации мода и распылителя.
Что мы называем «модом»?
Mod — это устройство, которое подает ток на распылитель. Ток нагревает провод внутри распылителя, и жидкость из распылителя испаряется.
Что такое телескопический мод?
Это мод, в котором для регулировки длины используется телескоп. Таким образом, он может работать с батареями любого размера.
В чем разница между электронными и механическими модами?
Механические модификации напрямую используют энергию батареи, когда электронные модификации используют электронную схему (PCBA), которая изменяет ток, который батарея посылает в распылитель.
Как должен быть сделан правильный механический мод?
Правильный механический мод должен иметь боковые и симметричные отверстия для выхода газа из батареи, эти отверстия должны быть сделаны близко к положительному полюсу батареи, и они также должны иметь способ предотвращения коротких замыканий, таких как пружина, которая плавится в случае короткое замыкание, или электронный модуль, предотвращающий короткое замыкание.
Какие бывают механические моды?
Механические моды отличаются друг от друга металлическими деталями, из которых они сделаны, и положением кнопки.Есть моды боковых кнопок (наиболее удобные), моды передней кнопки, и в некоторых из них вам нужно прижаться ртом к моду, чтобы выстрелить.
Что мы называем «электромеханическим» модом?
Это электронные модификации, в которых используется печатная плата без проводов. Даже кнопка у них механическая. Единственный такой мод — «Proteus» из «Golden Greek».
Какие бывают электронные моды?
Есть модификации, которые используют печатную плату на основе изменения вольт, другие изменяют ватт, а другие изменяют температуру, которая применяется к сопротивлению внутри распылителя.У других есть все предыдущие варианты.
Как правильно почистить контакты механического или электронного модуля?
Можно использовать лист из нержавеющей стали с сеткой, чтобы потереть поверхности, соприкасающиеся с аккумулятором.
Что такое распылитель?
Распылитель — это устройство, которое испаряет жидкость. Он несет провод, который нагревается из-за тока, который подается на него через мод, и испаряет жидкость вокруг провода через хлопок, который прикреплен к катушкам проводов.
Что мы называем «капельным наконечником»?
Это небольшой пластиковый, металлический или деревянный цилиндр в верхней части распылителя, который мы помещаем в рот, чтобы всасывать воздух, попадающий на проволоку.
Что мы называем «жидким контролем»?
— это особенность распылителя, которая позволяет большему или меньшему количеству жидкости впитываться в капиллярный материал, которым обычно является хлопок.
Что мы называем «контроль воздуха»?
— это функция распылителя, позволяющая большему или меньшему количеству воздуха попадать на провод.
Что мы называем «заправочной крышкой»?
Это крышка распылителя, которую мы используем для заправки распылителя жидкостью.
Что мы называем «резервуар-коллектор»?
Это особый способ предотвратить утечку из распылителя. Это часть распылителя, которая собирает все жидкости, которые не впитались капиллярным материалом.
Как изменить воздух, который попадает на провод внутри распылителя?
Обычно с воздушным кольцом, прикрепленным к основанию или верхней части распылителя, или с помощью штифтов с разными отверстиями.
Какие бывают форсунки?
Есть много видов распылителей, таких как RTA, RDTA, DRIPPERS, SQUONK ATOMIZERS. Основное различие заключается в количестве воздуха, который попадает в сопротивление. В частности, капельницы не несут резервуар, но вам нужно очень часто наполнять их жидкостью, помещая в него капли жидкости вручную или сжимая бутылку, которая прикреплена к моду. Распылители squonk — это распылители, которые работают с их баком, но они также дают возможность для squonk.Также есть форсунки, в которые можно установить 2 или более катушек параллельно.
Почему мой распылитель не работает?
Проверьте, контактирует ли центральная стойка со стойкой мода, проверьте, правильно ли прикреплен провод к распылителю, проверьте, правильно ли работает кнопка вашего мода, а также проверьте, есть ли короткое замыкание, которое обычно происходит внутри распылитель, когда провод касается одного из столбов распылителя, или ножка провода, которая прикреплена к положительному выводу распылителя, также касается любого места, которое играет роль отрицательного полюса.
Если вы используете электронный мод, проверьте, выдерживает ли ваш мод сопротивление.
Простое изготовление однородных наноразмерных капель перфторуглерода в качестве ультразвуковых контрастных агентов
Акбари С., Пирбодаги Т., Камм Р.Д., Хаммонд П.Т. (2017) Универсальное микрожидкостное устройство для высокопроизводительного производства микрочастиц и микрокапсулирования клеток. Лабораторный чип 17: 2067–2075
Артикул
Google Scholar
Aschenbrenner E, Bley K, Koynov K, Makowski M, Kappl M, Landfester K, Weiss CK (2013) Использование полимерного эффекта узо для получения наночастиц на основе полисахаридов.Langmuir 29: 8845–8855
Статья
Google Scholar
Астафьева К. и др. (2015) Нанокапли перфторуглерода, стабилизированные фторированными поверхностно-активными веществами: характеристика и возможности использования в качестве тераностических агентов. J Mater Chem B 3: 2892–2907
Статья
Google Scholar
Beck-Broichsitter M, Nicolas J, Couvreur P (2015) Выбор растворителя вызывает заметные сдвиги «области Узо» для наночастиц поли (лактид- со- -гликолид), полученных путем наносаждения.Наноразмер 7: 9215–9221
Артикул
Google Scholar
Bouchemal K, Briançon S, Perrier E, Fessi H (2004) Состав наноэмульсии с использованием спонтанного эмульгирования: оптимизация растворителя, масла и поверхностно-активного вещества. Int J Pharmaceut 280: 241–251
Статья
Google Scholar
Диас-Лопес Р., Цапис Н., Фаттал Э (2010a) Жидкие перфторуглероды в качестве контрастных веществ для ультразвукового исследования и 19F-МРТ.Pharmaceut Res 27: 1
Статья
Google Scholar
Диас-Лопес Р. и др. (2010b) Эффективность ПЭГилированных нанокапсул перфтороктилбромида в качестве контрастного агента для ультразвука. Биоматериалы 31: 1723–1731
Артикул
Google Scholar
Ganachaud F, Katz JL (2005) Наночастицы и нанокапсулы, созданные с использованием эффекта узо: спонтанное эмульгирование как альтернатива ультразвуковым устройствам и устройствам с высоким сдвигом.ChemPhysChem 6: 209–216
Статья
Google Scholar
Haase MF, Stebe KJ, Lee D (2015) Непрерывное производство иерархических и асимметричных бижелевых микрочастиц, волокон и мембран путем разделения фаз, вызванного переносом растворителя (STRIPS). Adv Mater 27: 7065–7071
Статья
Google Scholar
Hettiarachchi K, Talu E, Longo ML, Dayton PA, Lee AP (2007) Создание микропузырьков на кристалле как практическая технология для производства контрастных веществ для ультразвуковой визуализации.Lab Chip 7: 463–468
Артикул
Google Scholar
Ян А., Ставис С. М., Хонг Дж. С., Вриланд В. Н., ДеВо Д. Л., Гайтан М. (2010) Микрожидкостное перемешивание и образование наноразмерных липидных везикул. ACS Nano 4: 2077–2087
Артикул
Google Scholar
Jeong W-C et al (2012) Контролируемое образование капель субмикронной эмульсии с помощью высокостабильного режима подачи через наконечник в микрофлюидных устройствах.Lab Chip 12: 1446–1453
Артикул
Google Scholar
Канеда М.М., Карутерс С., Ланза Г.М., Виклайн С.А. (2009) Наноэмульсии перфторуглеродов для количественной молекулярной визуализации и таргетной терапии. Ann Biomed Eng 37: 1922–1933
Статья
Google Scholar
Karnik R et al (2008) Микрожидкостная платформа для управляемого синтеза полимерных наночастиц.Nano Lett 8: 2906–2912
Статья
Google Scholar
Клоссек М.Л., Туро Д., Земб Т., Кунц В. (2012) Структура и растворимость в поверхностно-активных веществах. Микроэмульсии ChemPhysChem 13: 4116–4119
Статья
Google Scholar
Королева М.Ю., Юртов Е.В. (2012) Наноэмульсии: свойства, способы получения и перспективные применения. Russ Chem Rev 81: 21–43
Статья
Google Scholar
Котта С., Хан А.В., Прамод К., Ансари С.Х., Шарма Р.К., Али Дж. (2012) Изучение пероральных наноэмульсий для повышения биодоступности плохо растворимых в воде лекарств.Мнение эксперта Drug Deliv 9: 585–598
Статья
Google Scholar
Крипфганс О.Д., Фабиилли М.Л., Карсон П.Л., Фаулкс Дж. Б. (2004) Об акустическом испарении капель микрометровых размеров. J Acoust Soc Am 116: 272–281
Статья
Google Scholar
Leese PT, Noveck RJ, Shorr JS, Woods CM, Flaim KE, Keipert PE (2000) Рандомизированные исследования безопасности эмульсии перфлуброна для внутривенного введения.I. Влияние на коагуляционную функцию у здоровых добровольцев. Anesth Anal 91: 804–811
Статья
Google Scholar
Lepeltier E, Bourgaux C, Couvreur P (2014) Нанопреципитация и «эффект Узо»: применение к устройствам доставки лекарств. Adv Drug Deliv Rev 71: 86–97
Статья
Google Scholar
Ли Д.С., Юн С.Дж., Пеливанов И., Френц М., О’Доннелл М., Поццо Л.Д. (2017) Перфторуглеродные наноэмульсии с полипирроловым покрытием как звуко-фотоакустический контраст.Agent Nano Lett 17: 6184–6194
Статья
Google Scholar
Лим Дж. М. и др. (2014) Синтез наночастиц сверхвысокой производительности с однородным распределением по размерам с использованием коаксиального турбулентного струйного смесителя. ACS Nano 8: 6056–6065
Артикул
Google Scholar
Lowe K (1999) Перфторированные кровезаменители и искусственные переносчики кислорода. Blood Rev 13: 171–184
Статья
Google Scholar
Lu Z, Schaarsberg MHK, Zhu X, Yeo LY, Lohse D, Zhang X (2017) Универсальная нанокапля разветвляется от ограничения эффекта Узо.Proc Natl Acad Sci 114: 10332–10337
Статья
Google Scholar
Ма М. и др. (2014) Наноэмульсия лекарственное средство – перфторуглерод с ультратонким покрытием из диоксида кремния для синергетического эффекта химиотерапии и абляции с помощью сфокусированного ультразвука высокой интенсивности. Adv Mater 26: 7378–7385
Статья
Google Scholar
Martz TD, Sheeran PS, Bardin D, Lee AP, Dayton PA (2011) Прецизионное производство капель перфторуглерода с фазовым переходом с использованием микрофлюидики.Ультразвук Med Biol 37: 1952–1957
Статья
Google Scholar
Марц Т.Д., Бардин Д., Ширан П.С., Ли А.П., Дейтон П.А. (2012) Микрожидкостное генерирование акустически активных нанокапель. Small 8: 1876–1879
Статья
Google Scholar
Ngo FC et al (2000) Оценка жидких перфторуглеродных наночастиц в качестве контрастного агента для пула крови с использованием энергетической доплеровской гармонической визуализации.In: Ultrasonics Symposium, 2000 IEEE, IEEE, pp 1931–1934
Perera RH, Hernandez C, Zhou H, Kota P, Burke A, Exner AA (2015) Ультразвуковая визуализация за пределами сосудистой сети с помощью контрастных агентов нового поколения. Междисциплинарные обзоры Wiley. Nanomed Nanobiotechnol 7: 593–608
Статья
Google Scholar
Rapoport N, Gao Z, Kennedy A (2007) Многофункциональные наночастицы для сочетания ультразвуковой визуализации опухолей и таргетной химиотерапии.J Natl Cancer Inst 99: 1095–1106
Статья
Google Scholar
Rapoport NY, Efros AL, Christensen DA, Kennedy AM, Nam K-H (2009a) Генерация микропузырьков в наноэмульсиях с фазовым сдвигом, используемых в качестве носителей противораковых лекарств. Bubble Sci Eng Technol 1: 31–39
Статья
Google Scholar
Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam K-H (2009b) Контролируемая и таргетная химиотерапия опухолей с помощью активируемых ультразвуком наноэмульсий / микропузырьков.J Control Rel 138: 268–276
Статья
Google Scholar
Rapoport N et al (2011) Опосредованная ультразвуком визуализация опухолей и нанотерапия с использованием загруженных лекарством блок-сополимерных стабилизированных перфторуглеродных наноэмульсий. J Control Rel 153: 4–15
Артикул
Google Scholar
Резник Н., Уильямс Р., Бернс П. Н. (2011) Исследование испаренных субмикронных капель перфторуглерода в качестве контрастного агента для ультразвука.Ультразвук Med Biol 37: 1271–1279
Статья
Google Scholar
Saberi AH, Fang Y, McClements DJ (2013) Изготовление наноэмульсий, обогащенных витамином E: факторы, влияющие на размер частиц с использованием спонтанного эмульгирования. J Colloid Interface Sci 391: 95–102
Статья
Google Scholar
Сегерс Т., де Ронд Л., де Йонг Н., Борден М., Верслуис М. (2016) Стабильность монодисперсных микропузырьков, покрытых фосфолипидом, образованных путем фокусировки потока при высокой производительности.Langmuir 32: 3937–3944
Статья
Google Scholar
Сео М., Мацуура Н. (2014) Прямое включение липофильных наночастиц в монодисперсные нанокапли перфторуглерода путем растворения в растворителе микрокапель прекурсора, генерируемых микрожидкостями. Langmuir 30: 12465–12473
Статья
Google Scholar
Сео М., Уильямс Р., Мацуура Н. (2015) Уменьшение размера микропузырьков, наполненных сорастворителем, с образованием акустически чувствительных монодисперсных перфторуглеродных нанокапелек.Лабораторный чип 15: 3581–3590
Артикул
Google Scholar
Sheeran PS, Luois SH, Mullin LB, Matsunaga TO, Dayton PA (2012) Дизайн активируемых ультразвуком наночастиц с использованием перфторуглеродов с низкой температурой кипения. Биоматериалы 33: 3262–3269
Артикул
Google Scholar
Shim J-u et al (2013) Сверхбыстрая генерация фемтолитровых микрожидкостных капель для иммуноанализов с подсчетом одиночных молекул.7: 5955–5964
Shpak O, Verweij M, Vos HJ, de Jong N, Lohse D, Versluis M (2014) Испарение акустической капли инициируется супергармонической фокусировкой. Proc Natl Acad Sci 111: 1697–1702
Статья
Google Scholar
Shui L, van den Berg A, Eijkel JC (2011) Масштабируемое образование монодисперсных капель аттолитера с использованием многофазной нано-микрофлюидики. Microfluid Nanofluid 11: 87–92
Артикул
Google Scholar
Ситникова Н.Л., Сприк Р., Вегдам Г., Эйзер Э. (2005) Механизм устойчивости образования спонтанно образовавшихся транс-анетол-водно-спиртовых эмульсий.Langmuir 21: 7083–7089
Статья
Google Scholar
Stroock AD, Dertinger SK, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Хаотический смеситель для микроканалов. Science 295: 647–651
Статья
Google Scholar
Talu E, Lozano MM, Powell RL, Dayton PA, Longo ML (2006) Долгосрочная стабильность за счет липидного покрытия монодисперсных микропузырьков, образованных устройством фокусировки потока.Langmuir 22: 9487–9490
Статья
Google Scholar
Tan H, Diddens C, Lv P, Kuerten JG, Zhang X, Lohse D (2016) Зарождение микрокапель, вызванное испарением, и четыре фазы жизни испаряющейся капли Узо. Proc Natl Acad Sci 113: 8642–8647
Статья
Google Scholar
Витале С.А., Кац Дж.Л. (2003) Дисперсии жидких капель, образованные гомогенным зародышеобразованием жидкость-жидкость: «Эффект узо».Langmuir 19: 4105–4110
Статья
Google Scholar
Xu X et al (2017) Микрожидкостное производство наноразмерных капель перфторуглерода в качестве жидких контрастных агентов для ультразвуковой визуализации. Lab Chip
Yan X et al (2014) Простая, но точная разработка функциональных нанокапсул с помощью нанопреципитации. Angew Chem Int Ed 53: 6910–6913
Статья
Google Scholar
Zhang Q, Liu X, Liu D, Gai H (2014) Образование сверхмалых капель за счет испарения летучих компонентов.Лабораторный чип 14: 1395–1400
Артикул
Google Scholar
Zhang X, Lu Z, Tan H, Bao L, He Y, Sun C, Lohse D (2015) Формирование поверхностных нанокапелек в условиях контролируемого потока Proc Natl Acad Sci 112: 9253–9257
Article
Google Scholar
принцип действия и виды
Предназначен для предотвращения опасного воздействия электрического тока на людей и животных при прикосновении к токоведущим и другим частям приборов и электроустановок, находящихся под напряжением.Следующая важная функция устройства — предотвращение возгорания при появлении токов утечки на землю. Защитное действие проявляется в отключении питающей сети в следующих ситуациях:
- короткое замыкание корпуса электроустройства, находящегося под напряжением, через корпус на массу;
- контакт токоведущих элементов с заземленными нетоковедущими частями электроустановок в результате повреждения изоляции;
- Замена заземляющего (PE) и нулевого (N) проводников в электрической цепи.
УЗО также защищает сеть от скачков напряжения. Для этого к нейтрали на входе устройства и фазе на выходе подключают нелинейное сопротивление. По нему протекает дифференциальный ток при повышении напряжения выше 270 В, после чего УЗО отключается.
Устройства защиты различаются по типам и принципам действия. Одним из наиболее практичных является УЗО селективное, обеспечивающее целенаправленное отключение групп нагрузок. Его особенностью является пониженная скоростная характеристика (тип S или G).Он устанавливается ближе к источнику, имеет номинальный дифференциальный ток 100 или 300 мА и обеспечивает первое отключение следующего обычного УЗО, расположенного перед потребителем.
Таким образом, современная защита электрических сетей основана на выявлении неисправностей и отключении отдельных участков от систем, работающих в нормальных условиях.
Как УЗО?
УЗО еще называют выключателем дифференциального тока. Цель остается прежней: отключить цепь при возникновении тока утечки.Основным элементом устройства является тороидальный трансформатор с несколькими витками нулевого и фазного проводов, включенными встречно. Результирующее магнитное поле при нормальной работе устройства остается нулевым. Утечка в землю нарушает баланс, во вторичной обмотке возникает напряжение, при достижении определенного значения электрическая цепь отключается с помощью пускового, а для УЗО
требуется шина PE PE. В противном случае при появлении потенциала на корпусе электрического устройства из-за поврежденной изоляции нет тока утечки, а при прикосновении к нему и заземленным металлическим частям (радиатор, водопроводные трубы) можно получить заметное поражение электрическим током.В этом случае защитное устройство сработает, но будет лучше, если это произойдет от протечки в землю.
Для надежной работы защитного устройства следует проложить заземление. При работе по этой схеме УЗО разомкнет цепь до прикосновения к металлическому корпусу оборудования или бытовой техники.
Типы УЗО
УЗО классифицируются по их функциям:
- переменного тока — это реакция на переменный ток утечки, который внезапно появляется или постепенно увеличивается.
- A — дополнительно работает от постоянного пульсирующего дифференциального тока, который может возникать неожиданно или постепенно увеличиваться.
- B — реакция на постоянные и переменные пульсирующие токи утечки.
- S — селективное УЗО с дополнительной выдержкой времени на отключение.
- G — аналог S, но с меньшей задержкой.
Какое УЗО выбрать?
Пульсирующий ток в бытовых условиях исходит от стиральных машин, диммеров освещения, телевизоров, компьютеров, электроинструментов и других устройств с импульсными источниками питания.Отсутствие устройств с тиристорным управлением значительно увеличивало вероятность утечки постоянного или переменного пульсирующего тока. Поэтому если раньше было достаточно установить тип колонок, то теперь нужен тип А или В.
Где установить УЗО?
- Общественные места в зданиях, где нет повышенной опасности поражения электрическим током.
- В электрических цепях с возможной опасностью поражения электрическим током (помещения с повышенной влажностью, группа розеток, бытовая техника и т. Д.)).
- На главном входе для защиты от пожарной опасности. Обычно УЗО устанавливается на выборочное.
- В напольных щитах, в многоквартирных домах, в индивидуальных домах.
- В радиальных общеразбирательных УЗО и индивидуальных на отходящих линиях, с выбором параметров, гарантирующих селективное срабатывание.
- При близких уровнях защиты, например, 10 и 30 мА, 30 и 40 мА и т. Д. Селективность срабатывания УЗО по току маловероятна из-за высокой скорости срабатывания.Для указанных значений это предусмотрено, если выбрано селективное УЗО 100 мА, так что по-прежнему есть временная задержка.
- Из-за старения изоляции не всегда происходит постепенное увеличение токов утечки.
- В случае мгновенного увеличения тока утечки из-за пробоя изоляции может сработать любое обычное УЗО, последовательно находящееся в цепи. Это связано с быстрым и значительным превышением настроек сразу на нескольких уровнях защиты.
Необходимость использования селективных УЗО
УЗО селективно выполняет свою функцию противопожарной защиты, если применяется модификация с выдержкой времени — S или G. К ним предъявляются повышенные требования по устойчивости к коротким замыканиям, коммутационной способности, динамической и динамической. термическая стойкость и др.
Обычно на основном вводе устанавливают селективное пожаротушение УЗО на большой ток утечки.
УЗО не следует использовать в цепях, которые нельзя внезапно отключать, так как это может привести к аварийным ситуациям (пожарная или охранная сигнализация, опасность для персонала и т. Д.)).
В дополнение к УЗО автоматические выключатели должны обладать селективностью по току. Первые срабатывают ближе к месту перегрузки или короткого замыкания. В этом случае автоматические выключатели сработают раньше, чем ток короткого замыкания достигнет предельного значения. Это необходимо для предотвращения перегрузки последовательно соединенных секций, поскольку ток проходит через контакты их защитных устройств.
Типы селективных УЗО
Для селективных УЗО важно сделать паузу, чтобы сработал общий тип устройства, который расположен под схемой.При этом устройство с выдержкой времени срабатывания пропускает через себя ток утечки и не работает. Интервал задержки для моделей может отличаться. Для изделий с маркировкой S это 0,15-0,5 с, например УЗО 63а 100мА селективное, с возможностью настройки задержки. Выбор будет оптимальным, если они будут установлены в подъезде квартиры силовым кабелем. У некоторых зарубежных моделей выдержки времени даже выше. Они предназначены для отключения цепи при возникновении опасности возгорания.Чем дольше отключается защита, тем больше вероятность возгорания изоляции.
С маркировкой G прибор работает в пределах 0,06-0,08 с. Устройство достаточно быстрое, чтобы реагировать на проблемы с сетью. Устанавливается под УЗО типа S. При двухступенчатой защите его можно установить на основной ввод, так как скорость подключаемых ниже УЗО еще выше.
Если в сети несколько групп нагрузки, перед каждой подключается отдельное защитное устройство, а ко входу подключается УЗО селективного пожаротушения.Тогда при выходе из строя одной из линий обесточится только она, а остальные останутся подключенными. С такой схемой легче обнаружить неисправность. Если обычное УЗО выходит из строя или не реагирует на неисправности в цепи, то срабатывает селективное УЗО (300 мА или 100 мА) и отключает всю сеть.
Для обеспечения селективности необходима следующая настройка прибора:
- установить время срабатывания УЗО селективного, если оно предоставляет такую возможность;
- установить необходимые параметры отключения в зависимости от величины тока утечки.
Характеристики отключения УЗО избирательного действия должны быть не менее чем в 3 раза выше остальных. Только в этом случае устройство будет гарантированно работать.
Параметры УЗО
Два временных параметра УЗО определены российскими стандартами:
- время отключения — период от появления отключающего тока утечки ∆i до момента гашения дуги;
- предельное время простоя для устройства типа S — это временной интервал между началом появления ∆i и размыканием контактов.
Последний параметр определяет избирательность срабатывания УЗО. Его предельное значение составляет 0,5 с. При этом следует учитывать, что для защиты людей открытие должно происходить в течение 10-30 мс, для предотвращения возгорания изоляции — до 500 мс. УЗО селективного типа S широко применяется там, где необходимо исключить ложные срабатывания от воздействия шумов или скачков напряжения.
По скорости отключения сети УЗО делятся следующим образом:
- общего пользования — без задержки;
- тип G — 10-40 мс;
- с тип — 40-500 мс.
В электрических цепях всегда возникают токи утечки. В итоге они не должны превышать 1/3 номинального значения ∆i устройства. Считается, что на 1 мА нагрузки приходится 0,4 мА тока утечки потребителя, а 1 м длины фазного провода составляет 10 мкА. Защитное устройство регулируется по величине полного естественного тока утечки. Если этого не сделать, могут возникать частые ложные срабатывания. При этом следует учитывать, что устройство с ∆i = 100 мА больше не защитит человека от поражения электрическим током.
При проектировании электрических сетей можно не указывать тип УЗО, при этом специалистов не требуется. Но нужно заранее обосновать свой выбор. Важно, чтобы номинальный ток устройства был выше, чем ток предполагаемой нагрузки. К тому же УЗО устанавливается только в общую пару с. Вы можете установить одно дифференциальное автоматическое устройство вместо двух. Будет дешевле, но стоит правильно подобрать параметры.
УЗО защищает в двухпроводных сетях, где нет защитного проводника.Но работает только после прикосновения к опасному месту.
Как выбрать противопожарное устройство?
Селективное УЗО 63А, 300мА обычно устанавливается на входе в качестве противопожарного.
Многие используют обычные универсальные модели, устанавливая в своих домах устройства защиты 30 мА. Здесь выполняется функция «частичной» селективности из-за большой разницы токов срабатывания. Это экономит деньги на разнице в цене. Кроме того, обычное УЗО обеспечивает лучшую безопасность благодаря более быстрому срабатыванию при улавливании токов утечки.Разница в поведении устройств заключается в том, что селективное устройство не выключится первым при дифференциальном токе, равном или превышающем 300 мА. Это уже чрезвычайная ситуация и вопрос не в том, идти ли к пульту управления, который может быть на уличном столбе. При таком большом токе обычное УЗО наверняка сработает, если на линии произойдет авария. Вот так вот будет понятно, где искать неисправность.
Таким образом, УЗО противопожарной защиты можно установить как выборочное, так и обычное.
Производители УЗО
Legrand Group — всемирно известный производитель электрических систем для зданий. Лидирующие позиции обеспечиваются высочайшей производственной культурой и большими инвестициями в создание новой электротехнической продукции. Для России группа поставляет весь перечень электрооборудования, от розеток и выключателей до сложных систем управления.
Селективное УЗО Legrand бывает электронного и электромеханического типа (указано на лицевой панели). В зависимости от исполнения он устанавливается сбоку или снизу выключателя.Регулируемая задержка времени (0-1,3 с) и чувствительность. В сочетании с автоматами они используются в качестве высокочувствительных или основных защитных устройств.
Цены на УЗО остаются высокими, как и на другие бренды.
АББ наиболее полно представляет серию УЗО F 200 — от 16 А до 125 А. Для домашней сети достаточно УЗО 63А, 100 мА — выборочно. Для токов утечки в бытовых приборах обычно используется устройство на 30 мА. В качестве противопожарной защиты на вводе частного дома используется селективное УЗО АВВ (63А, 300мА) четырехполюсное для трехфазной сети, как одно из самых надежных.Он не уступает по качеству продукции бренду Legrand. Для квартиры с однофазным вводом будет двухполюсный прибор. На фото ниже показано УЗО селективное ABB 63A, 300mA.
Максимальный ток, который может выдержать устройство, составляет от 3 до 10 кА (указывается на передней панели). Это кратковременный, а не рабочий ток. УЗО может делать паузу, пока автоматический выключатель не отключит автоматический выключатель.
Компания одна из лидирующих, но цены очень высокие.Потребители часто отдают предпочтение моделям abb, потому что безопасность — самое дорогое. В наличии блок дифференциала ABB DDA200 AP-R типа A и AC. Он обеспечивает задержку срабатывания 10 мс, хотя это не селективное УЗО ABB. Кривая характеристики отключения при нем расположена между избирательным и обычным УЗО. Устройство имеет высокую устойчивость к ложным срабатываниям по сравнению с устройствами общего назначения.
Процент брака на селективные УЗО ABB, как и на другие изделия, составляет всего 2%, благодаря чему проблем в работе практически нет.Электромеханические устройства намного надежнее электроники и имеют преимущества во всем, кроме цены. Начали появляться УЗО с электронным приводом, не уступающие по механической надежности.
На рынке можно найти товары вдвое дешевле, а по качеству они не уступают АББ. Также компания выпускает серию FH 200, которая имеет несколько более низкую цену, но существенно проигрывает по качеству продукции F 200. В частности, у него нет таких надежных контактов крепления проводов, которые быстро начинают болтаться, что сказывается на качестве работы.
Если покупать селективный ABB UZO, то только в специализированных магазинах, а не в сомнительных местах. Подделка опасна тем, что не может защитить человека должным образом. Модульному оборудованию, которое также входит в перечень УЗО, своими руками уделяется большое внимание из-за высокой стоимости.
Отечественная группа компаний IEK производит около 7 тысяч наименований продукции, соответствующей международным стандартам и обеспечивающей надежную работу электрических сетей.
УЗО предъявляют высокие требования.С одной стороны, они должны работать надежно, защищая людей от проводки — от опасности возгорания. Но при этом устройства, установленные на разных уровнях электрических цепей, должны действовать выборочно, отключая отдельные участки. Этим условиям, как и ГОСТ 51326.1, соответствует УЗО ИЭК тип ВД1 63С.
Товарная группа представлена значениями номинальных токов 25-80 А, а дифференциальные токи составляют 100 мА и 300 мА. Продукция дешевле, чем у известных брендов, и широко используется в качестве начальных средств пожаротушения.В этом случае селективность защиты обеспечивается большими значениями токов отключения и выдержек времени на отключение цепей.
Выбор предохранительных устройств
Если электричество потребляется по простой схеме, через цепь протекает синусоидальный ток. Утечка будет аналогичной формы и здесь можно будет использовать устройства типа AU.
В современной бытовой технике все чаще используются схемы управления с отсечкой фазы. Устройство типа AU не будет на них реагировать, а здесь лучше применить UZO Type A, который также реагирует на синусоидальный ток.Устройства можно использовать вместе, например, тип переменного тока подходит для ламп накаливания, а тип А — для розеток, к которым можно подключать устройства с импульсным управлением. Но если придется менять освещение на энергосберегающие лампы с регулировкой яркости по фазе, замените тип динамика на А. Иначе не получится.
Для разделения работы по уровням электрических цепей необходимо использовать селективные устройства. На основном вводе устанавливается тип S, на втором уровне — G, а затем устройства мгновенного срабатывания.
УЗО выбирается по номинальному току на одну ступень выше, чем подключенный к нему автоматический выключатель, который может работать в течение длительного времени при превышении нагрузки. Если вход автоматический на 50 А, то подойдет УЗО селективное 63А.
Согласно требованиям стандартов, на лицевых панелях устройств указаны номинальные значения напряжения, а также длительный ток и ток отключения ∆i. Если есть обозначение синусоиды, это тип переменного тока. Наличие под ним двух положительных полупериодов указывает на тип А.Селективные УЗО обозначаются буквами S и G. Номинальный ток короткого замыкания указан в рамке. Устройство должно выдерживать его подъем по максимуму, пока автомат не выключится. Обычно ток не успевает достичь предельного значения. УЗО заранее отключает цепь с дефектом, пока не нагреется проводник и не воспламенится изоляция.
Вывод
В бытовых электрических сетях применяется токовая и временная селективность. Для этого устройства безопасности устанавливаются последовательно в виде дерева, где один выключатель является общим.В основе принципа действия лежит уменьшение времени протекания тока через тело при прямом или косвенном прикосновении к электрическим компонентам, находящимся под напряжением. УЗО селективное установлено на входе и выполняет противопожарную функцию.
Наличие на форуме людей, тупо отрицающих использование общего УЗО, вынуждает оправдать использование общего УЗО, по крайней мере, для тех, кто не понимает, но пытается разобраться.
В системах ТТ это важное средство защиты, так как при замыкании фазы на землю токи обычно не превышают 50А, что может быть недостаточно для срабатывания АВ.Поэтому следует применять дублирование — двухступенчатую защиту с помощью УЗО.
Для TN-CS и TN-S токи замыкания на землю могут превышать 1000 А, в связи с чем лучше позволить всему УЗО работать при 100, 300 мА, чем допускать такой ток в системе, что также минимизирует ущерб от короткое замыкание
О системах заземления и их особенностях можно прочитать в теме «Полезные ссылки про CIP и прочее» от 50 поста и далее, где сравниваются характеристики и свойства систем заземления.
Федеральный закон Российской Федерации от 22 июля 2008 г. N 123-ФЗ «Технический регламент о требованиях пожарной безопасности»
Дата первого официального опубликования: 1 августа 2008 г. Опубликовано: в «РГ» — Федеральный выпуск № 4720 1 августа 2008 г.
Действует с 1 мая 2009 г.
Принят Государственной Думой 4 июля 2008 г.
Утвержден Советом Федерации 11 июля 2008 г.4. Линии электроснабжения зданий, сооружений и зданий должны иметь защитные покрытия. запорные устройства для предотвращения возгорания при неисправности электроприемников.Правила установки и параметры защитных устройств должны учитывать требования пожарной безопасности, установленные в соответствии с настоящим Федеральным законом.
ПУЭ 7 издание.
7.1.84. Для повышения уровня защиты от пожара при коротких замыканиях на заземленные части, когда ток недостаточен для максимальной токовой защиты
, ввода в квартиру, индивидуальный дом и т. Д. Рекомендуется установить УЗО с током срабатывания. до 300 мАПРОЕКТИРОВАНИЕ И УСТАНОВКА
ЭЛЕКТРИЧЕСКИЕ УСТАНОВКИ ЖИЛЫЕ
И ОБЩЕСТВЕННЫЕ ЗДАНИЯ
СП 31-110-2003
3 УТВЕРЖДЕНО И РЕКОМЕНДУЕТСЯ для использования в качестве нормативного документа Системы
нормативных документов в строительстве постановлением Госстроя России от 26 октября 2003 г.194РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ ЗАЩИТНО-ОТКЛЮЧАТЕЛЬНЫХ УСТРОЙСТВ В ЭЛЕКТРИЧЕСКОМ ОБОРУДОВАНИИ ЖИЛЫХ ЗДАНИЙ
А.1.7 Применение УЗО в существующих жилых помещениях с двухпроводными сетями, где приемники не имеют защитного заземления, является эффективным инструментом в условия повышения электробезопасности. Срабатывание УЗО при замыкании на корпус в таких сетях происходит только при появлении дифференциального тока, то есть при прямом контакте с корпусом (подключенным к земле).В связи с этим установка УЗО может быть рекомендована в качестве временной меры для повышения безопасности до проведения полной реконструкции. Решение об установке УЗО должно приниматься в каждом конкретном случае после получения объективных данных о состоянии электропроводки и приведения оборудования в исправное состояние.A.4.2 При установке УЗО должны постоянно соблюдаться требования селективности. Для двух- и многокаскадных схем УЗО, расположенное ближе к источнику питания, должно иметь уставку срабатывания и время срабатывания как минимум в три раза больше, чем у УЗО, расположенного ближе к потребителю.Для УЗО, установленных на вводе осветительных (квартирных) щитов, в соответствии с ПУЭ 7.1.72 и 7.1.84 требования селективности времени срабатывания могут не выполняться.
А.4.7 Недопустимо использование УЗО в групповых линиях, не имеющих максимальной токовой защиты, без дополнительной аппаратуры, обеспечивающей эту защиту.
А. 5 Особенности использования УЗО для объектов индивидуального строительства
А.5.1 К одноквартирным, дачным и садовым домам должны быть повышены требования по электробезопасности, что связано с их высокой энергоемкостью, разветвленностью электрических сетей и спецификой эксплуатации, как самих объектов, так и электрооборудования, поскольку в большинстве случаев электрооборудование не отнесено к квалифицированным, постоянным эксплуатационным службам.А.5.4 Для одноквартирных домов рекомендуется УЗО с номинальным током до 30 мА для обеспечения группового питания розеток внутри дома, в том числе в подвалах, встроенных и пристроенных гаражах, а также в групповом питании. сети, снабжающие ванными, душевыми и саунами. Для розеток внешнего монтажа требуется установка УЗО с номинальным током до 30 мА.
Не так давно стали появляться инновационные разработки в области электромонтажного оборудования.Это автоматы различных типов и устройства защиты.
Теперь они стали более безопасными, менее общими, аккуратными. Устанавливать такое оборудование стало намного проще, чем их предшественников.
Результатом современных подходов к безопасности электропроводки являются защитные автоматы, которые называются УЗО. Они предназначены для защиты человека от токов утечки, при прикосновении человека к оборудованию, где происходит короткое замыкание или большая нагрузка.
Установка защитного устройства на потребителей электрической энергии осуществляется в местах, где существует опасность поражения электрическим током.
Современные требования к выполнению проводки подключения к автоматам требуют обязательного включения УЗО в электрическую цепь.
Многие специалисты утверждают, что установка двухпроводного УЗО невозможна. Свои мнения они регламентируют тем, что для этого необходимо понести большие затраты на улучшение и переделку всей проводки или просто отказаться от УЗО. Это мнение ошибочно.
По своей сути УЗО предусматривает подключение всего двух пар проводов, так как имеет всего две пары оконечных устройств.Прикрепить землю просто некуда. Принцип работы УЗО не требует обязательного заземления.
Подключение УЗО без заземления: к нему подключаются фазный и нулевой провода, нагрузка на которые выравнивается и тщательно контролируется.
При повышении нагрузки на проводку или утечке тока (короткое замыкание на металлический корпус) срабатывает УЗО, выводя из строя поврежденный участок.
Для обеспечения полной защиты человека от поражения электрическим током металлических деталей, которые оказались под напряжением в результате обрыва провода, в домашних условиях необходимо установить УЗО с заземлением.Устанавливается, если в доме есть система заземления.
Заземление и УЗО являются полностью независимыми частями безопасности электрических цепей. Их сочетание позволяет обеспечить надежную безопасность человеку при эксплуатации бытовой техники и электрооборудования.
Независимо от наличия заземления предохранительное устройство сработает и выполнит свою защитную функцию.
Многие системы заземления сами по себе не обеспечивают надежной защиты людей от электричества.Только соединение УЗО в сочетании с землей обеспечивает надежную защиту человека от тока.
Принципы процесса УЗО. В случае обрыва нулевого провода УЗО не отключит питание. Затем напряжение появляется на корпусах заземленных устройств.
Тогда в случае контакта с человеком, при котором возникает ток утечки, устройство мгновенно сработает, отключив питание. Таким образом, человек застрахован от поражения электрическим током.
Устройство пожарной безопасности не защищает человека от поражения электрическим током. В отличие от функций, которые выполняет обычное УЗО для бытовой электропроводки, противопожарное УЗО предназначено для отключения токов утечки с высоким порогом отсечки.
Диапазон токов утечки может достигать 500 мА с минимальным порогом 100 мА. Такие токи для человека могут быть смертельными.
Несмотря на эти свойства, устройство противопожарной защиты считается защитным устройством.Такое устройство защищает только от значительных токов утечки, которые могут вызвать пожар или пожар.
Принцип работы данного УЗО заключается в том, что при напряжении 220В ток утечки достигает 500 мА, выделяется тепло, что равно температуре обычной бытовой зажигалки.
Для предотвращения этого и предотвращения возгорания устанавливается устройство противопожарной защиты, отсекающее токоведущие части поврежденного участка кабельных линий.
Помимо высоких номинальных токов, устройство противопожарной защиты УЗО ничем не отличается от принципа действия обычного бытового УЗО.
Рано или поздно человек начинает задумываться о безопасности своего дома, своей жизни. Чтобы обезопасить себя и свой дом, нужно тщательно изучить, как решить эту проблему. Особого внимания в доме требует электропроводка, к выбору которой следует подходить с особой тщательностью.
Сейчас в каждом доме целый арсенал различных бытовых электроприборов.И чем больше его количество, тем больше нагрузка на электрический кабель.
При отсутствии устройств защиты это может привести к неисправности. Любой материал со временем становится бесполезным. Это касается как внешней проводки, так и внутренней проводки, расположенной в корпусе прибора. Изоляционные свойства со временем теряются. Происходит утечка электричества, и это прямая угроза жизни человека.
Чтобы избежать неприятностей, достаточно прибегнуть к использованию защитных устройств. Одним из таких считается УЗО — УЗО .
Почему необходимо устанавливать в квартире
Из названия устройства становится понятно, что он предназначен для защиты любого живого существа от разрушительного воздействия электрического тока. А также предотвращает возможность возгорания электропроводки из-за ее перегрева, различных неисправностей.
Как отмечалось ранее, целостность внутренней электрической цепи устройства может быть нарушена. На то есть несколько причин:
- механическое воздействие;
- температурных повреждений;
- Старение электропроводки.
Итак, при отсутствии устройств защитного отключения любая из этих причин может нанести человеку непоправимый вред. Вы можете потерять не только свой дом, но и умереть, находясь в состоянии стресса. Поражение электрическим током может вызвать фибрилляцию сердца.
Конечно, здесь большую роль играет сопротивление самого человека. Чем он выше, тем больше шансов остаться в живых. Только скажите, а нужно ли рисковать своим здоровьем? Не проще ли просто установить необходимую защиту и радоваться жизни? Вы еще сомневаетесь, что за зачем узо в квартире ?
Рассмотрим пример.Во время работы стиральной машины на фазном проводе была повреждена изоляция, и он касается корпуса. В результате корпус электроприемника оказался под напряжением.
Мужчина, стоявший на мокром полу, коснулся металлической части пишущей машинки. В результате по образовавшейся цепи ток через человека уходит в землю. УЗО, «чувствуя», что не весь ток вернулся, сразу отключает напряжение, тем самым спасая жизнь человеку.
Несомненно, человек почувствует легкое покалывание, однако останется живым.
Как работает УЗО?
Его основная задача — защитить человека от поврежденного устройства, корпус которого имеет опасный потенциал. Фаза и ноль от источника питания подключаются к верхним клеммам УЗО, фаза и ноль, которые идут к нагрузке на нижних клеммах. В этом случае электрический ток течет от источника питания, проходит через УЗО к электрическому устройству, а затем снова возвращается в сеть.
Отсюда мы заключаем, что УЗО — это своего рода контроллер, который регулирует силу тока на «входе» и «выходе».Если токи на входе и выходе УЗО не равны между собой, то где-то есть утечка. Устройство безопасности очень быстро реагирует на эту утечку и примерно через 0,04 секунды срабатывает и отключается.
Проще говоря, в нормально функционирующей электрической сети не должно быть значительной разницы между входящим и исходящим токами, проходящими через УЗО. Если количество исходящего и возвращаемого тока одинаково, то отключения не будет. Но если ток нашел другой путь, и его часть «утекла», УЗО отключится и отключит питание.
В то же время нужно помнить, что УЗО способно Значительно повысить безопасность электроустановок, но не способно полностью исключить риск электрического повреждения или возгорания. УЗО не реагируют на аварийные ситуации, если они не сопровождаются током утечки. Например, такие как короткое замыкание и перегрузка.
Зачем вам нужно приложение УЗО или УЗО на 100 мА для противопожарной защиты?
Для защиты человека от поражения электрическим током устанавливается УЗО с номинальным током утечки порядка 10–30 мА.И почему? Да все просто, потому что ток большей ценности может быть смертельным для человека.
Но производители выпускают защитные устройства с номинальным током утечки 100, 300 и 500 мА. Вы не думали об этом с такой деноминацией.
Всем известно, что при токе 50 мА человек без посторонней помощи не сможет избавиться от электрического провода. Значение 80 мА приводит к мгновенной смерти. Зачем устанавливать устройства большого номинала? На самом деле такие защитные устройства не применяются для защиты от поражения электрическим током, их задача несколько иная.
Необходимость использования УЗО с номиналом 100 мА и выше обусловлена тем, что практически в каждой системе питания есть «паразитные» токи. Другими словами, происходит утечка естественных токов. В любом приборе нет идеальной изоляции, всегда есть естественный ток утечки.
Даже в проводах, которые используются для монтажа электропроводки, есть естественная утечка и тем более она длиннее проводки. Если установить УЗО номиналом 30 мА на большой дом, скажем в 2, 3 этажа, то он просто ложно выйдет из строя из-за естественной утечки токов.
Устройства защитного отключения, рассчитанные на ток утечки 300 мА, предотвращают возникновение пожара. Например, при непрерывной утечке тока, равной 200-500 мА, выделяется такая тепловая энергия, которой достаточно для воспламенения близлежащих материалов и возникновения пожара.
Таким образом, основная задача данного защитного устройства типа состоит в противопожарной защите. Также УЗО с номиналом 100 мА — 500 мА обеспечивают резерв основных УЗО. Их установка производится при входе в комнату.
Смысл работы таков: сначала отключается УЗО с наименьшим номиналом, но если по каким-то причинам не выключилось (например, из-за неисправности) и подстройка продолжается, то ввод будет работать через некоторое время.
Установив устройство защитного отключения — вы спасете жизнь и здоровье ваших близких!
В связи с тем, что УЗО селективного типа 4П на 63А 300мА не было в ближайшем интернет-магазине, я все же разобрался, что УЗО селективного типа в плате учета не нужно! Для щита учета можно использовать обычное УЗО 63А 300 мА, которое из-за разницы рабочих токов автоматически обеспечивает селективность с УЗО в доме номиналом 30 мА.В результате сэкономили около 2 тонн. П. Селективное УЗО в недорогом интернет-магазине сейчас стоит около 5,8 т.р., а обычное с таким же рейтингом около 3,8.
Не сомневаюсь, что необходимо устройство противопожарной защиты УЗО в щитке учета на опоре. Вопрос был в том, должна ли она быть селективной или нет.
Наша цель при установке двухуровневой защиты с УЗО (300 мА в распределительном щите и 30 мА в групповых сетях в доме) — обеспечить селективность их работы.Проще говоря, необходимо следить за тем, чтобы УЗО в доме сработало первым и при этом не сработало УЗО в распределительном щите.
В интернете полно рекомендаций о необходимости установки УЗО селективного типа (тип S) в щиток учета. При этом в интернет-магазинах селективный тип УЗО либо отсутствует, либо существенно дороже обычных номиналов, но не селективный. Сразу этот пародокс навел меня на мысль, что люди чаще всего ставят обычные (неселективные УЖД) доски бухгалтерии.И теперь эта мысль подтверждается. И это вдобавок правильно.
Техническое руководство ABB: Защита от замыканий на землю с помощью устройств дифференциального тока помогло мне разобраться в проблеме. Отдельный раздел посвящен селективности УЗО (стр. 63, или 6/7).
При токах утечки 100 и 300 мА для УЗО в распределительном щите и 30 мА для УЗО в доме эта селективность обеспечивается автоматически!
Ниже приведена таблица из Технического руководства ABB, в которой отображается информация о селективности пар УЗО.В заголовках столбцов указаны токи утечки УЗО, которое стоит первым (например, в экране). В заголовках строк указываются токи срабатывания УЗО, которое является вторым (например, в доме). Обычные УЗО обозначаются как inst (мгновенные). Селективные УЗО с маркировкой S.
В таблице указан цвет пары, для которой обеспечивается селективность (правильная последовательность срабатывания).
Другой цвет указывает на причину обеспечения селективности. Выделяют два типа: частичный (частичный) и полный.Несмотря на ощущение, что частичная избирательность — это как вторая свежесть, на самом деле с ней все нормально. Просто в случае «частичной» селективности селективность обеспечивается разницей в номинальном токе утечки УЗО (30 и 100 или 300 мА). А полная селективность обеспечивается задержкой срабатывания УЗО селективного действия.
В руководстве содержится правило, согласно которому «частичная» селективность обеспечивается, если коэффициент номинального тока УЗО превышает 3. Для «полной» селективности селективное УЗО должно быть первым, а отношение токов должно быть равно 2.
В общем заказываю обычное УЗО и больше не парюсь
Avdt 32 электромеханический или электронный. Узо электронный или электромеханический. Внешний источник питания
Для защиты от утечек тока используются дифференциальные токовые выключатели или устройства защитного отключения (УЗО). В каждой новой квартире, новом доме это устройство становится необходимым оборудованием.
Однако устройства с принципиально иной внутренней конструкцией, определяющей надежность всего УЗО, могут продаваться под общим названием.Конструкция может иметь разное расположение рычагов и кнопок управления, иметь стандартные или расширенные варианты подключения шин и проводов, но принципиальное значение имеет конструкция УЗО выпуска … Он может быть электромеханическим или электронным. Только как сразу отличить электромеханическое УЗО от электронного? Этот вопрос требует подробного рассмотрения.
Чем отличается электромеханическое УЗО от электронного
УЗО и дифавтоматы
(это УЗО и автоматический выключатель в одном корпусе) по своему внутреннему устройству делятся на два типа: электромеханические и электронные … Это никоим образом не влияет на рабочие параметры и технические характеристики. Многие сразу задаются вопросом: а в чем разница между ними? И разница есть, и важная: УЗО электромеханического типа сработает в любом случае, если в зоне повреждения появится ток утечки, вне зависимости от напряжения в сети или нет … Основной рабочий модуль электромеханическое УЗО представляет собой дифференциальный трансформатор (тороидальный сердечник с обмотками). Если в поврежденном месте происходит утечка, то во вторичной обмотке этого трансформатора появляется напряжение, которое включает поляризованное реле, что в свою очередь приводит к срабатыванию механизма отключения.
Электронные УЗО срабатывают при наличии утечки тока в зоне повреждения и только при наличии сетевого напряжения.
То есть для полноценной работы устройству остаточного тока электронного типа требуется внешний источник питания. Это связано с тем, что основным рабочим модулем электронных УЗО является электронная плата с усилителем. И эта плата не будет работать без внешнего источника питания.
Откуда источник питания? Внутри УЗО нет батареек или аккумуляторов.А напряжение для питания электронной платы с усилителем идет от внешней сети. Есть сеть 220В, и появилась утечка тока — УЗО сработает! Если в сети нет напряжения, защитное устройство не сработает.
Итак, для работы электромеханического УЗО нужна только утечка тока, для электронного УЗО требуется утечка тока и напряжения в сети.
На фото слева — УЗО Hager с электромеханическим расцепителем, справа — УЗО с электронным расцепителем.
Насколько важно, чтобы защитное устройство оставалось работоспособным при отсутствии напряжения? Уверен, многие пользователи ответят примерно так: если в сети есть напряжение, электронное УЗО сработает. Если в сети нет напряжения, то зачем ему вообще работать, ведь в сети нет напряжения, а значит брать утечку тока негде. А какие вы знаете чрезвычайные ситуации, когда может исчезнуть напряжение в доме или квартире или, как говорят в народе, «нет света»? Это может быть авария на подходящей к дому линии, это могут быть ремонтные работы электросетей, а может быть другая очень распространенная проблема — прогорание нулевого провода в доске пола.Все оборудование будет без признаков жизни, все сигнальные устройства (сигнальные лампы, если есть) укажут, что в сети нет напряжения. Однако фаза никуда не делась! Остается опасность поражения электрическим током. Представьте, что в такой ситуации произошло повреждение изоляции внутри стиральной машины, фаза попала в корпус. Если в этот момент прикоснуться к корпусу станка, произойдет течь и УЗО должно сработать. Но точно электронный УЗО не подойдет, так как на его электронную плату с усилителем приходит только «фаза» без нуля, нет источника питания, поэтому электронная плата не будет фиксировать результирующий ток утечки, импульс отключения будет не будет отправлен на механизм отключения, и УЗО не отключится.Для человека такая ситуация крайне опасна. Поэтому, как ни печально, при появлении тока утечки в этой ситуации электронный УЗО не сработает.
Еще одна распространенная проблема — скачки напряжения. Конечно, сейчас многие устанавливают реле напряжения для защиты, но не у всех они есть. Что такое скачки напряжения — это отклонение от номинала. То есть вместо 220 Вольт в вашей розетке может появиться 170 Вольт или 260 Вольт, а еще хуже — 380 Вольт. Повышенное напряжение опасно для электронного оборудования, которым фактически оснащены электронные УЗО и электронные дифференциальные автоматические устройства.Скачки напряжения могут повредить электронную плату с усилителем. Внешне все будет выглядеть целым и невредимым, но при возникновении утечки тока ситуация может стать плачевной для человека — из-за поврежденных электронных компонентов УЗО не отреагирует на утечку.
Вы можете даже не знать, что внутренняя начинка защитного устройства вышла из строя. Поэтому необходимо периодически проверять работу УЗО кнопкой «ТЕСТ». Специалисты рекомендуют проводить эту проверку не реже одного раза в месяц.
Так, в электросети могут возникать различные аварийные ситуации, при которых электронные УЗО или диффавтоматика могут потерять свои защитные функции. Вышеуказанные проблемы не опасны для электромеханических защитных устройств. , поскольку для работы им не требуется внешний источник питания. Будет ли напряжение в сети или нет, электромеханическое УЗО (RCBO) сработает в любом случае при наличии утечки тока в сети.
Как отличить электромеханическое УЗО от электронного
Внешне эти два устройства очень похожи и многие пользователи, не задумываясь, покупают их без разбора в магазине, даже не зная об особенностях.Чтобы понять, какое устройство дифференциального тока перед вами является электронным или электромеханическим, необходимо уметь различать их. Вы думаете, что это под силу только профессионалам? Но уверяю, это не так, ничего сложного здесь нет.
Обратите внимание на схему на корпусе УЗО
Самый простой и надежный способ — изучить схему, изображенную на корпусе УЗО. Электрическая схема применяется к любому защитному устройству. Между показанными схемами электромеханического УЗО и электронного есть небольшие различия.
На схеме электромеханического УЗО или дифавтомата изображен дифференциальный трансформатор (через который «продета» фаза и ноль), вторичная обмотка этого трансформатора, а также поляризованное реле, подключенное к вторичной обмотке. Поляризованное реле уже действует непосредственно на механизм отключения. Все это показано на схеме. Вам просто нужно понять, какой цифрой обозначается каждый из описанных выше элементов. Например, электромеханическое УЗО европейского производителя HAGER:
.
Дифференциальный трансформатор помечен прямоугольником (иногда овалом) вокруг фазного и нулевого проводов.От него отходит виток вторичной обмотки, которая подключена к поляризованному реле. На схеме поляризованное реле обозначено прямоугольником или квадратом. Реле механически связано с триггером отключения.
Здесь также указана кнопка ТЕСТ с собственным сопротивлением (сопротивление позволяет создать утечку в 30 мА, безопасный порог для жизни человека). Как видите, в электромеханическом УЗО нет электронных плат и усилителей. Конструкция состоит из одного механика.
Теперь рассмотрим электронное УЗО. Например, электронный дифавтомат 16А, 220В, с током утечки 30 мА.
Как видно из схемы, на корпусе электронного дифавтомата практически все обозначено как на электромеханическом защитном устройстве.
Но, если присмотреться, можно увидеть, что между дифференциальным трансформатором и поляризованным реле есть дополнительный элемент в виде прямоугольника с буквой «А», обозначение I>.Это такая же электронная плата с усилителем. Кроме того, вы можете видеть, что к этой плате подходят два провода «фаза» и «ноль» (обозначены на рисунке зеленым цветом ниже). Это как раз тот внешний источник питания, который необходим для полноценной работы данного типа УЗО. Не будет блока питания, и УЗО работать не будет. Независимо от того, есть утечка или нет.
Итак, для работы электромеханического УЗО нужна только утечка тока, для электронного УЗО требуется утечка тока и напряжения в сети.Настоятельно рекомендуем приобрести УЗО или диффузионный автомат электромеханического типа.
Устройства защитного отключения (УЗО) — одно из самых популярных устройств, используемых как строительными корпорациями, так и частными пользователями. Но как можно быть уверенным в правильности выбора? Надеюсь, эта статья поможет вам ориентироваться на рынке УЗО, насыщенном различными моделями.
Устройство остаточного тока. Основы
Устройства защитного отключения (УЗО) или устройства дифференциальной защиты предназначены для защиты людей от поражения электрическим током в случае электрических неисправностей или при контакте с токоведущими частями электроустановки, а также для предотвращения пожаров и пожаров, вызванных: токи утечки и замыкания на землю… Эти функции не присущи обычным автоматическим выключателям, которые реагируют только на перегрузку или.
В чем причина потребности в этих устройствах для пожаротушения?
По статистике причиной около 40% всех возгораний является «замыкание электропроводки».
Во многих случаях общая фраза «короткое замыкание электропроводки» часто подразумевает утечку электричества, которая возникает из-за старения или повреждения изоляции. В этом случае ток утечки может достигать 500 мА.Экспериментально установлено, что при протекании тока утечки именно такой силы (а что такое полампера? Ни тепловой, ни электромагнитный расцепители на ток такой силы просто не реагируют — хотя бы по той причине, что они не предназначены для этого) максимум на полчаса через влажные опилки самовозгораются. (И это касается не только опилок, но вообще любой пыли.)
Как устройства дифференциальной защиты защищают вас и меня от поражения электрическим током?
Если человек прикоснется к токоведущей части, по его телу будет протекать ток, величина которого является частным от деления фазного напряжения (220 В) на сумму сопротивлений проводов, заземления и самого тела человека: Иперс = Uph / (Rпр + Rz + Rpers).В этом случае сопротивлениями заземления и проводки по сравнению с сопротивлением человеческого тела можно пренебречь, последнее можно принять равным 1000 Ом. Следовательно, рассматриваемое значение тока будет 0,22 А или 220 мА.
Из нормативной и справочной литературы по охране труда и технике безопасности известно, что минимальный ток, протекание которого уже ощущается человеческим организмом, составляет 5 мА. Следующее стандартизованное значение — это так называемый ток без отключения, равный 10 мА.Когда по телу человека протекает ток такой силы, происходит спонтанное сокращение мышц. Электрический ток 30 мА уже может вызвать паралич дыхания. Необратимые процессы, связанные с кровотечением и сердечной аритмией, начинаются в организме человека после протекания по телу тока 50 мА. Возможен летальный исход при воздействии тока 100 мА. Очевидно, что уже надо быть защищенным от тока, равного 10 мА.
Так, своевременная реакция автоматики на ток менее 500 мА защищает объект от возгорания, а на ток менее 10 мА — защищает человека от последствий случайного прикосновения к токоведущим частям.
Также известно, что за токоведущую часть, находящуюся под напряжением 220 В, можно спокойно продержаться 0,17 с. Если токоведущая часть находится под напряжением 380 В, время безопасного прикосновения сокращается до 0,08 с.
Проблема в том, что такой небольшой ток и даже за ничтожно малое время не способен исправить (и, конечно же, выключить) обычные защитные устройства.
Таким образом, родилось такое техническое решение, как ферромагнитный сердечник с тремя обмотками: — «токоподвод», «токоподвод», «контроль».Ток, соответствующий фазному напряжению, подаваемому на нагрузку, и ток, протекающий от нагрузки в нейтральный проводник, индуцируют магнитные потоки противоположных знаков в сердечнике. При отсутствии утечек в нагрузке и в защищаемом участке проводки общий расход будет равен нулю. В противном случае (прикосновение, повреждение изоляции и т. Д.) Сумма двух потоков станет ненулевой.
Поток, возникающий в сердечнике, индуцирует электродвижущую силу в обмотке управления. Реле подключено к обмотке управления через прецизионное устройство фильтрации всех видов помех.Под действием ЭДС, возникающей в обмотке управления, реле размыкает фазную и нулевую цепи.
Во многих странах использование УЗО в электроустановках регулируется нормами и стандартами. Так, например, в РФ — принят в 1994-96 гг. ГОСТ Р 50571.3-94, ГОСТ Р 50807-95 и др. Согласно ГОСТ Р 50669-94 УЗО в обязательном порядке устанавливается в электросетях мобильных зданий из металла или с металлическим каркасом для уличной торговли и бытового обслуживания. .В последние годы администрациями крупных городов в соответствии с государственными стандартами и рекомендациями Главгосэнергонадзора приняты решения по оснащению фонда жилых и общественных зданий этими устройствами (в Москве — Распоряжение Правительства Москвы № 868-РП от 20.05.94 г.).
УЗО бывают разные …. Трехфазные и однофазные …
Но на этом деление УЗО на подклассы не заканчивается …
На данный момент на российском рынке представлены 2 принципиально разные категории УЗО.
1. Электромеханический (независимый от сети)
2. Электронный (зависит от сети)
Рассмотрим отдельно принцип работы каждой из категорий:
УЗО электромеханические
Предки УЗО — электромеханические. Принцип точной механики, т.е. заглянув внутрь такого УЗО, вы не увидите компараторов операционных усилителей, логики и тому подобного.
Состоит из нескольких основных компонентов:
1) Так называемый трансформатор тока нулевой последовательности, его назначение — отслеживать ток утечки и передавать его с определенным Kтр на вторичную обмотку (I 2), I ut = I 2 * Ktr (очень идеализированная формула , но отражающие суть процесса).
2) Чувствительный магнитоэлектрический элемент (запираемый, т.е. при срабатывании без внешнего вмешательства он не может вернуться в исходное состояние — защелку) — играет роль порогового элемента.
3) Реле — обеспечивает отключение при срабатывании защелки.
Этот тип УЗО требует высокоточной механики чувствительного магнитоэлектрического элемента. В настоящее время только несколько мировых компаний продают электромеханические УЗО. Их стоимость намного выше, чем цена электронных УЗО.
Почему электромеханические УЗО получили распространение в большинстве стран мира? Все очень просто — этот тип УЗО сработает при обнаружении тока утечки на любом уровне напряжения в сети.
Почему этот фактор (независимость от уровня сетевого напряжения) так важен?
Это связано с тем, что при использовании исправного (исправного) электромеханического УЗО мы гарантируем в 100% случаев срабатывание реле и, соответственно, отключение питания потребителя.
У электронных УЗО этот параметр тоже большой, но не равен 100% (как будет показано ниже, это связано с тем, что при определенном уровне сетевого напряжения не будет работать электронная цепь УЗО), а в В нашем случае каждый процент возможен для человеческих жизней (будь то прямая угроза жизни человека при касании проводов, или косвенная, в случае пожара из-за выгорания изоляции).
В большинстве так называемых «развитых» стран электромеханические УЗО являются стандартом и устройством, обязательным для широкого применения.В нашей стране постепенно происходят сдвиги в сторону обязательного использования УЗО, однако в большинстве случаев потребителю не предоставляется информация о типе УЗО, что влечет за собой использование дешевых электронных УЗО.
Электронные УЗО
Любой строительный рынок наводнен такими УЗО. Стоимость электронных УЗО местами ниже электромеханических до 10 раз.
Недостатком таких УЗО, как уже было сказано выше, является не 100% гарантия при исправном состоянии УЗО его срабатывания из-за появления тока утечки.Преимущество — дешевизна и доступность.
В принципе, электронное УЗО построено по той же схеме, что и электромеханическое (рис. 1). Отличие заключается в том, что место чувствительного магнитоэлектрического элемента занимает опорный элемент (компаратор, стабилитрон). Чтобы такая схема работала, вам понадобится выпрямитель, небольшой фильтр (возможно, даже КРЕН). Поскольку трансформатор тока нулевой последовательности является понижающим (в десятки раз), тогда также необходима схема усиления сигнала, которая, помимо полезного сигнала, также будет усиливать помехи (или сигнал дисбаланса, присутствующий при нулевой утечке). Текущий).Из вышесказанного очевидно, что момент срабатывания реле в этом типе УЗО определяется не только током утечки, но и напряжением сети.
Если вам не по карману электромеханическое УЗО, то все же стоит взять УЗО электронное, ведь оно работает в большинстве случаев.
Бывают и случаи, когда нет смысла покупать дорогое электромеханическое УЗО. Один из таких случаев — использование стабилизатора или источника бесперебойного питания (ИБП) при питании квартиры / дома.В этом случае нет смысла брать электромеханическое УЗО.
Сразу отмечу, что я говорю о категориях УЗО, их плюсах и минусах, а не о конкретных моделях. Вы можете купить некачественные УЗО как электромеханического, так и электронного типов. При покупке запрашивайте сертификат соответствия, ведь многие электронные УЗО на нашем рынке не сертифицированы.
Трансформатор тока нулевой последовательности (ТТНП)
Обычно это ферритовое кольцо, через которое (внутри) проходят фазный и нейтральный провод, они играют роль первичной обмотки.Вторичная обмотка равномерно намотана на поверхность кольца.
Идеально:
Пусть ток утечки равен нулю. Ток, протекающий через фазовый провод, создает по величине магнитное поле, создаваемое током, протекающим через нейтральный провод, и в противоположном направлении. Таким образом, общий поток муфты равен нулю, а ток, индуцированный во вторичной обмотке, равен нулю.
В момент протекания тока утечки в проводах (ноль, фаза) возникает неравенство токов в результате возникновения потока муфты и индукции тока, пропорционального току утечки, во вторичную обмотку.
На практике через вторичную обмотку протекает ток небаланса, который определяется используемым трансформатором. Требование к ТТНП следующее: ток небаланса должен быть значительно меньше тока утечки, приведенного во вторичную обмотку.
Выбор УЗО
Допустим, вы определились с типом УЗО (электромеханическое, электронное). Но что выбрать из огромного списка предлагаемых товаров?
Выбрать УЗО с достаточной точностью можно по двум параметрам:
Номинальный ток и ток утечки (ток отключения).
Номинальный ток — это максимальный ток, который проходит через фазовый провод. Этот ток легко найти, зная максимальную потребляемую мощность. Просто разделите потребляемую мощность в наихудшем случае (максимальная мощность при минимальном Cos (?)) На фазное напряжение. Ставить УЗО на ток больше номинального тока автомата перед УЗО не имеет смысла. В идеале с запасом берем УЗО на номинальный ток равный номинальному току автомата.
Часто встречаются УЗО
с номинальными токами 10,16,25,40 (А).
Ток утечки (рабочий ток) — обычно 10 мА, если УЗО установлено в квартире / доме для защиты жизни человека, и 100-300 мА на предприятии для предотвращения пожаров при сгорании проводов.
Есть и другие параметры УЗО, но они специфичны и не интересны рядовому потребителю.
Выход
В этой статье были рассмотрены основы понимания принципов работы УЗО, а также методы построения различных типов устройств защитного отключения.И электромеханические, и электронные УЗО безусловно имеют право на существование. имеет свои выразительные достоинства и недостатки.
УЗО (устройство защитного отключения) — Это электроустановочное изделие, предназначенное для отключения подачи электричества в проводку в случае утечки тока в случае нарушения изоляции в проводах или электроприборах.
УЗО, в отличие от автоматического выключателя, предназначено исключительно для защиты человека от поражения электрическим током, предотвращения возгорания и не принимает непосредственного участия в работе электроприборов.УЗО не защищает от короткого замыкания в проводке и в случае прикосновения человека к фазному и нулевому проводам.
На фото изображено двухпроводное устройство защитного отключения типа ВД1-63, предназначенное для работы в однофазной сети переменного тока 220 В и рассчитанное на ток защиты 30 мА. УЗО с такими характеристиками подходит для установки в подъезде практически любой квартирной электропроводки.
Ассортимент монтажных изделий включает комбинированные, в одном корпусе которых встроены УЗО и автоматический выключатель.Такое устройство называется выключателем дифференциального тока со встроенной максимальной токовой защитой. На фото представлен внешний вид модели RCBO32, рассчитанной на ток защиты электропроводки 16 А и защиту человека на 30 мА. Но такие устройства защиты не получили широкого распространения из-за их дороговизны.
Кроме того, в случае отключения сложно определить, является ли неисправность коротким замыканием или утечкой тока.
Как выбрать УЗО
Выбрать УЗО для квартирной проводки или дома для домашнего электрика не составит труда. Подходит любое однофазное УЗО, рассчитанное на рабочий ток равный току защиты автоматического выключателя и ток утечки 30 мА … Фотография такого УЗО дана в начале статьи.
Какой тип УЗО лучше всего подходит для квартиры
электромеханическое или электронное
УЗО
выпускаются в двух исполнениях — электромеханическом и электронном. Для правильного выбора нужно сравнить их технические характеристики.
Сравнительная таблица характеристик электромеханического и электронного УЗО | ||
---|---|---|
Характеристика | УЗО электромеханическое | УЗО электронное |
Цена | низкая | высокая |
Дизайн | сложный | простой |
Надежность | высокая | низкая |
Допуск рабочего тока | высокий | низкий |
Работоспособность при обрыве нулевого провода или при падении сетевого напряжения ниже допустимого | сохраняется | не работает |
Устойчивость к скачкам перенапряжения в сети | высокая | низкая |
размеры | большие | во много раз меньше |
Как видно из таблицы, при отсутствии ограничений по габаритным размерам нужно выбирать УЗО электромеханическое.Электронное УЗО незаменимо при установке на отдельный электроприбор, например, в розетку или удлинитель.
Основные технические характеристики УЗО
Требования к техническим характеристикам УЗО установлены ГОСТ Р 51326.1-99 (МЭК 61008-1-96) «Автоматические выключатели дифференциального тока бытового и аналогичного назначения без встроенной максимальной токовой защиты».
Для желающих сделать более осознанный выбор я свел в таблицу все основные технические характеристики УЗО.
Таблица основных технических характеристик УЗО | ||||
---|---|---|---|---|
Признак | Обозначение | Количество | Примечание | |
Рабочее напряжение | IN | 220, 380 | Для однофазной домашней сети УЗО устанавливается на напряжение 220 В, для трехфазной сети — на 380 В | |
Количество фаз | 1, 3 | Указывается в паспорте | ||
Рабочий ток утечки, I∆n | мА | 5 | Инструкции по установке в ПУЭ нет, но можно найти в рекомендациях по применению электроприборов, например, теплый пол | |
10 | Предназначен для подключения розеток, установленных в ванных, кухнях, детских комнатах и бытовой техники, установленной на земле | |||
30 | Универсальный, подходит для любого дома или квартиры | |||
100, 300 | Применяется в промышленности, иногда устанавливается на вводе электропроводки в корпус для повышения пожарной безопасности | |||
Максимальный ток нагрузки, In | И | 6-125 | Должен быть равен или превышать ток автоматического выключателя, установленного после УЗО | |
Максимальный коммутируемый ток, Im | И | 500 | Должен быть в 10 раз больше максимального тока нагрузки | |
Ток короткого замыкания, Inc | кА | 3-10 | Максимальный ток, который может выдержать УЗО кратковременно в случае короткого замыкания в проводке | |
Время отключения | мс | Время, по истечении которого при превышении допустимого тока утечки УЗО должно отключить нагрузку | ||
Периодичность проверок | месяц | 1 | Для простой проверки просто нажмите кнопку «Проверка УЗО».Для диагностики времени отклика требуется специальный прибор | |
Рабочая температура | ° C | минус 25 — +40 | Рабочая температура, при которой разрешена работа УЗО | |
Конструктивное исполнение | Электромеханическое | Более надежные, дешевые, но более крупные электронные УЗО | ||
Электронные | Современные УЗО, дорогие, маленькие | |||
Тип формы рабочего тока | AS | Отключение при медленном или резком нарастании синусоидального тока утечки | ||
И | Срабатывает, если синусоидальный или пульсирующий постоянный ток утечки увеличивается медленно или резко | |||
IN | Срабатывает, если синусоидальный, пульсирующий постоянный или постоянный ток утечки увеличивается медленно или резко | |||
Способ установки | Предназначен для монтажа на DIN-рейку в щитке | Предназначен для установки в электрощиты квартир и домов | ||
Встраивается в розетку | Устанавливается для защиты отдельного электрического устройства или, в случае старой электропроводки, для предотвращения ложных тревог из-за естественных токов утечки | |||
В виде переходника, вставляемого в розетку | ||||
Удлинитель | Устанавливается на шнур питания электроприбора |
На лицевой стороне устройства защитного отключения всегда имеется маркировка с основными техническими характеристиками.Расшифровка буквенно-цифрового обозначения показана на чертеже.
При выборе УЗО главное обращать внимание на напряжение, рабочий ток и ток утечки. Остальные параметры имеют второстепенное значение.
Электрическая схема подключения УЗО в панели приборов
Устройство защитного отключения в щитке четвертной разводки подключается сразу после счетчика в разрыв между нулевым и фазным проводами, идущими к выключателям.
Провода от счетчика подключаются поверх УЗО. Фазный провод L идет к левому контакту, а ноль N к правому контакту. Провода, идущие к машинам, подключаются к нижним клеммам в такой же последовательности. Желто-зеленый заземлитель прокладывается в обход УЗО.
Устройство и принцип работы УЗО
Когда УЗО находится во включенном состоянии (рычаг поднят вверх), через него подается напряжение питания на выключатели в проводке.Если включен потребитель электроэнергии, то по нейтральному и фазному проводам течет ток.
В УЗО провода проходят через дифференциальный кольцевой трансформатор, и когда через них протекает ток, в его магнитной цепи возбуждается магнитное поле. Если утечки нет, то токи в фазном и нулевом проводах равны и текут в противоположных направлениях. Следовательно, создаваемые ими магнитные поля имеют противоположную полярность и взаимно компенсируются. В этом случае по закону Кирхгофа ЭДС не возникает в дополнительной обмотке трансформатора, независимо от тока, протекающего по ней в нагрузку.
Принцип работы УЗО электромеханического
В том случае, если из-за нарушения изоляции бытового электроприбора по фазовому проводу протекает ток, больший, чем через фазный провод, в магнитопроводе трансформатора возникает магнитное поле. Если разность токов превышает I∆n, то в дополнительной обмотке индуцируется ЭДС достаточной величины для отключения УЗО и отключения питания проводки.
В электромеханическом УЗО к дополнительной обмотке трансформатора подключен электромагнит, соленоид которого механически связан с механизмом расцепления. Когда в обмотке возникает заданная ЭДС, соленоид втягивается и тем самым, воздействуя на механизм расцепления, размыкает контакты. Подача питания на проводку прекращается.
Принцип работы УЗО электронного
По внешнему виду стандартное электронное УЗО ничем не отличается от электромеханического и отличить их можно только по маркировке или схеме, нанесенной на корпус.Принцип действия обоих типов УЗО одинаков, разница заключается в измерительном приборе. В электронике вместо электромагнита установлена электронная схема в виде порогового компаратора с усилителем и реле.
При превышении разницы токов I∆n, протекающих по фазному и нулевому проводам, напряжение подается с усилителя на реле. Он срабатывает и УЗО перестает подавать напряжение на проводку.
Установка УЗО в экран на DIN-рейке
В стеновых панелях или коробках УЗО, как и другие монтажные электрические устройства, монтируются на DIN-рейку, ее также часто называют монтажной рейкой.Это металлическая пластина шириной 35 мм, изогнутая таким образом, что ее продольные края приподняты. Согласно ГОСТ Р МЭК 60715-2003 «Аппаратура распределения и управления низковольтная. Установка и крепление на рельсах электрооборудования в низковольтных комплектных распределительных и управляющих устройствах », обозначение Т35 .
Этот способ крепления не требует дополнительных креплений и позволяет быстро как установить УЗО, так и снять его для профилактики, проверки или замены.На фотографии показаны DIN-рейки старого образца, когда они были профилем из алюминиевого сплава.
DIN-рейки устанавливаются в панели горизонтально. На тыльной стороне УЗО есть два фиксатора — стационарный (на фото слева) и подпружиненный подвижный (справа). Таким образом, чтобы установить УЗО на рейку, нужно надеть верхнюю фиксированную защелку на край DIN-рейки, а затем прижать к ней нижнюю часть. Подвижная защелка погрузится в корпус УЗО и выйдет из него при прижатии УЗО к DIN-рейке всей плоскостью.
Для снятия УЗО с DIN-рейки достаточно вставить конец лезвия плоской отвертки, расположенный ниже отходящего проводника, в ушко подвижного фиксатора и надавить на него. Защелка выйдет из зацепления, и нижняя часть УЗО свободно отодвинется от DIN-рейки.
Подключенное УЗО находится под фазным напряжением и перед демонтажем необходимо отключить питание.
Как правильно подключить провода к УЗО
Бесперебойная работа всей электропроводки определяется не только правильным выбором сечения провода и электроприборов, но и надежностью их соединения между собой.Несмотря на простоту этой операции, часто допускаются ошибки, что впоследствии приводит к подгоранию контактов и выходу из строя УЗО.
Основной особенностью электромеханических устройств является их работа вне зависимости от наличия напряжения в сети.
Тока утечки будет вполне достаточно для работы оборудования, в это время во вторичной обмотке трансформатора возникает ток, что является причиной срабатывания реле, а соответственно и триггера.
Для работы электронного УЗО без напряжения не обойтись, в силу совершенно других принципов работы.
Внутри них есть усилитель и плата для него, срабатывающая при наличии даже небольшого тока во вторичной обмотке. Плата увеличивает доступный ток и передает импульс, достаточно сильный, чтобы активировать реле.
Именно поэтому в конструкции таких УЗО присутствует трансформатор меньшего размера.
Электромеханические агрегаты
имеют простую, но в то же время более надежную конструкцию, поэтому они реже ломаются в процессе эксплуатации.Но можно отключить электронное устройство при малом импульсе в сети.
В этом случае потребуется замена микросхемы или полупроводников. Несмотря на это, большая популярность электронных УЗО обусловлена их более низкой стоимостью.
Более того, современные разработки позволили оснастить такое оборудование дополнительной защитой от скачков напряжения. Как только произойдет скачок, он отключится.
Есть несколько других способов отличить эти два типа УЗО.
Самое сложное — посмотреть на схему внутри. Если это электромеханическое устройство, то на его схеме будет показан трансформатор дифференциального типа, у которого вторая обмотка подключена непосредственно к реле.
Реле схематично можно представить в виде квадрата, иногда прямоугольника. Связь с сетью, питающей узел, не следует показывать схематично.
Если рассматривать схематическое изображение УЗО электрического типа, то плата на нем будет изображена в виде треугольника.На схеме показаны линии от блока питания.
Можно использовать простую батарею, чтобы отличить одно устройство от другого. Включаем оборудование и двумя проводами подключаем к нему его столбы.
Таким образом, мы провоцируем скачок тока, в результате которого, если это УЗО электромеханическое, реле выключится. Соответственно, если отключение не произошло, то у нас электронная версия.
Если у вас нет под рукой аккумулятора, найдите постоянный магнит среднего размера и поднесите его к корпусу рассматриваемого оборудования.В этом случае обязательным условием является включенное состояние агрегата. Переместите магнит вдоль боковой и передней панели. Если реле не срабатывает, перед вами электронное оборудование, а если работает — электромеханическое.
Пишите комментарии, дополнения к статье, может я что-то упустил. Загляните, буду рад, если найдете на моем еще что-нибудь полезное.
Устройства защитного отключения бывают двух типов по принципу внутреннего устройства. Это электромеханические и электронные.Это касается и дифавтоматов, так как УЗО являются их неотъемлемой частью. Различный принцип внутреннего устройства этих устройств не влияет на их рабочие параметры. Однако есть нюансы, при которых один вид УЗО исправно выполняет свои функции, а другой — не может, что может привести к плачевным последствиям. Поэтому еще перед покупкой нужно знать, как их отличить.
Отличить электромеханическое УЗО от электронного можно тремя способами.Это соответствует схеме подключения, которая изображена на корпусе устройства, с использованием обычной батареи и постоянного магнита. Давайте подробнее рассмотрим каждый метод ниже.
1. Используя схему подключения, которая изображена на корпусе устройства.
Я считаю, что это самый простой способ их различить, так как для этого не нужны никакие дополнительные элементы и инструменты. Здесь главное запомнить отличия схем и все.
Если вы возьмете в руки какое-либо УЗО или дифавтомат, то на его корпусе вы обязательно найдете схему их внутреннего устройства. На самом деле существует два типа схем. Это один тип для электромеханического типа и второй тип для электронного типа. Хотя у каждого типа схемы есть небольшие отличия, они не столь значительны.
В двух словах: электромеханическое УЗО или дифавтомат состоит из дифференциального трансформатора и поляризованного реле. Если в контролируемой цепи возникает ток утечки, он генерирует ток во вторичной обмотке дифференциального трансформатора.Этот дифференциальный ток вызывает срабатывание реле, которое воздействует на триггер, вызывая срабатывание устройства.
Итак, на схеме нам нужно найти дифференциальный трансформатор и поляризованное реле. Первый обозначается овалом вокруг фазного и нейтрального проводников, а реле обозначается квадратом или прямоугольником. Реле с трансформатором соединены посредством вторичной обмотки, которая показана сплошной линией. Пунктирной линией обозначена механическая связь со спусковым крючком.Также на схеме часто изображается кнопка «Тест», но ее нет на представленном на фото дифавтомате.
На фото ниже я подписал необходимые элементы на схеме.
Электронные УЗО и дифавтоматы
имеют немного другую схему подключения на корпусе. Из названия можно понять, что работой таких устройств управляет электронная плата.
В двух словах: Если в управляемой цепи возникает ток утечки, то он поражает ток во вторичной обмотке дифференциального трансформатора.Этот дифференциальный ток улавливается электронной платой, усиливает его и создает импульс, от которого срабатывает реле. Реле уже воздействует на курок, тем самым выводя из строя устройство.
Электронные элементы намного компактнее, поэтому такие УЗО и дифавтоматы зачастую меньше по размеру. На рынке представлены электронные одномодульные защитные устройства, размером с однополюсный автоматический выключатель.
Здесь, на схеме, нам нужно помимо дифференциального трансформатора и реле найти плату электронного усилителя.Обозначается треугольником. Также ни одна плата не работает без питания, поэтому на схеме есть дополнительные линии для ее питания. На фото ниже я подписала все необходимые элементы.
В результате получаем:
- Если на схеме изображен овал над нулевым и фазным проводниками (дифференциальный трансформатор) и квадрат (реле), соединенные сплошной линией, то перед вами УЗО электромеханическое или дифавтомат.
- Если на схеме изображен овал над нейтральным и фазным проводниками (дифференциальный трансформатор) и квадрат (реле), соединенный сплошной линией через треугольник (плата усилителя), к которому подключены две силовые линии, то перед вами электронное УЗО или дифавтомат.
2. Второй способ отличить электромеханическое УЗО от электронного — использовать аккумулятор.
Хотя этот вариант и надежен, мне он кажется более сложным, так как с собой нужно иметь заряженный аккумулятор, два провода и отвертку. Также в магазине, думаю, вам в руки не дадут устройство, чтобы можно было к нему что-то подключить и поэкспериментировать. Еще много защитных устройств продаются в запечатанной упаковке (коробке), вскрыть которую в магазине тоже не разрешат.
Однако этот метод имеет право на жизнь и я вам об этом расскажу. Например, на фото я использую RCBO от Schneider Electric.
Здесь все просто. Надо сверху к единице, например к нулевому полюсу прикрутить один провод. Второй провод прикрутите к нижнему нулевому полюсу. Затем взвести ручку управления, т.е. включить УЗО или дифавтомат. Теперь нужно замкнуть другие концы проводов на любую заряженную батарею. Если устройство отключается, значит, оно электромеханическое.Если не выключается, то переверните аккумулятор (поменяйте полярность) и попробуйте снова замкнуть провода. Если устройство отключается, то однозначно электромеханическое.
Почему электромеханические УЗО и дифавтоматы работают от аккумуляторов? Потому что аккумулятор начинает разряжаться через замкнутый полюс, т.е. на одном полюсе появляется ток, который, в свою очередь, влияет на дифференциальный ток во вторичной обмотке трансформатора. Достаточно сработать поляризованное реле.
Если прибор не выключается, значит он электронный.Почему не выключается УЗО этого типа? Потому что для работы платы усилителя нужна мощность, которой нет. Следовательно, усилитель не подает импульс на реле, которое не влияет на триггер.
Такую операцию можно проводить на любом полюсе, нуле и фазе. Электромеханическое защитное устройство сработает в любом случае.
3. Третий способ отличить электромеханическое УЗО от электронного — с помощью постоянного магнита.
Здесь тоже нет ничего сложного. Просто нужно где-то найти постоянный магнит средних размеров (1 / 4-1 / 3 УЗО).
Последовательность действий следующая:
- подбираем УЗО или дифавтомат;
- взвести рычаг, т.е. включить его;
- вращаем магнит вокруг передней и боковой части устройства круговыми движениями.
Если при таких движениях прибор отключается, то он электромеханический, а если нет, то электронный.Этот способ не стопроцентный, так как силы вашего магнита может не хватить для появления дифференциального тока.
Итак, мы проанализировали все три доступных способа определения типов УЗО и дифавтоматов.
Вы когда-нибудь использовали такие варианты, чтобы отличить электромеханическое УЗО от электронного?
Давайте улыбнемся:
«Да будет свет!» — сказал электрик и полез за спичками.
Что нужно знать о греческом узо
Написано GreekBoston.com в греческой кулинарии
Узо — аперитив, который широко потребляется по всей Греции. Этот напиток со вкусом аниса имеет вкус раки, пастиса, арака и самбуки.Если вы ищете напиток, который позволит вам почувствовать вкус Греции, вам стоит попробовать узо. Вот что вам следует знать об узо. Вот дополнительная информация об узо, его истории и о том, как его пить:
О Узо
Узо — напиток со вкусом аниса, популярный по всей Греции. Это прозрачная жидкость, но при добавлении воды или льда узо приобретает молочно-белый цвет. Это изменение цвета связано с анетолом, эфирным маслом аниса. Анетол растворим в спирте крепостью 38% или выше, но не в воде.Разбавление узо приводит к его разделению и образованию эмульсии. Затем крошечные капельки рассыпаются на свету, приобретая молочно-белый цвет. Узо производится из побочных продуктов винограда, которые использовались для изготовления вина. После дистилляции узо в него добавляют специи и травы для создания уникального аромата.
История Узо
Считается, что узо было создано монахами с горы Афон в 14 веке. Узо имеет свои корни в ципуро. В начале 19 века началась современная дистилляция узо.Первая винокурня была основана в 1856 году Николаосом Катсаросом в Тырнавосе. Этот завод работает до сих пор. Узо стал более популярным, когда в начале 20 века абсент, сильно алкогольный напиток, стал менее популярным. В 1932 году был разработан нынешний стандарт производства узо, в котором используются медные кубы. С 2006 года узо можно производить только в Греции из-за его важности для греческого наследия. Узо получил одобренный ЕС PDO (Защищенное обозначение происхождения).
Происхождение названия узо доподлинно неизвестно, но оно может происходить либо от древнегреческого слова «озо», что означает запах, либо от турецкого слова «узум», что означает виноград.В основных греческих словарях узо происходит от турецкого, так что это может содержать некоторые сомнения.
Как пить узо
Узо — это напиток, который пьют, а не проглатывают. Вы не собираетесь делать уколы узо. Содержание алкоголя в нем может вызвать у вас неприятное похмелье. Узо — это напиток, которым вы можете наслаждаться с мезеде, таким как кальмары, креветки, жареный осьминог или сыр, овощи и мясные ассорти. Это очень крепкий напиток, поэтому всегда запивайте его небольшим количеством еды. Вместо охлаждения узо налейте его на пару кубиков льда в небольшом стакане.
Если вы не любитель кубиков льда, вы можете заменить их брызгами ледяной воды. Питье узо должно быть расслабляющим. Вы можете потягивать его, закусывая мезеде, и наслаждаться хорошей компанией и беседой. Вы можете быть удивлены, узнав, что узо не дополняет традиционные греческие закуски, поэтому его обычно не подают с ужином, перед ужином (аперитив) или после ужина (дижестив), несмотря на то, что он считается аперитивом. Узо обычно пьют во второй половине дня или ранним вечером.
Если вы собираетесь пить узо, пейте его по-гречески, чтобы получить полный эффект! Он напомнит вам не только о вкусной греческой кухне, но и о самой стране.
Вот некоторые рецепты, в состав которых входит узо:
Категория: Греческая кулинария
Это сообщение написано GreekBoston.