Стена из газобетона и кирпича: правильные способы отделки газобетонных стен

Содержание

правильные способы отделки газобетонных стен

Наружная отделка домов из газобетонных блоков кирпичом в наши дни очень популярна. Строение, которое возводится из этого материала, а затем обкладывается кирпичной кладкой, обходится намного дешевле, чем полностью кирпичное здание, при этом вид становится современным, более эстетичным и статусным с наименьшими вложениями. Но только ли во внешней привлекательности дело?

Преимущества и недостатки облицовки газобетонной стены кирпичом

Рассмотрим подробно преимущества и недостатки, которые имеет облицовка газобетона кирпичом.

Преимущества

  • Звукоизоляция.
  • Визуальная эстетика.
  • Укрепление строения.
  • Продление сроков службы.

Недостатки

  • При неправильной кладке в полости стены может скапливаться конденсат.
  • Дополнительные затраты на строительство и материалы.

Расходная статья ожидается в любом случае при обкладке здания, при этом газобетонные блоки являются одной из самых недорогих и устойчивых конструкций. Как сообщает «Инженерно-строительный журнал» №8 (2009 г) после проведения серьёзных испытаний на прочность и долговечность газобетонной стены с кирпичной облицовкой в 2009 году в Санкт-Петербурге выяснилось, что сроки существования такой стены варьируется от 60 до 110 и более лет. Рассматривалась единая климатическая зона и одинаковый по качеству материал.

Дом из газобетона облицованный кирпичом может иметь сроки эксплуатации разнящиеся практически вдвое.

Отчего такая разница в прочности и износостойкости? Оказалось, дело в наличие зазора и вентиляции между основой из газоблоков и кирпичной облицовкой.

Какие существуют способы облицовки газоблока кирпичом

Газоблоковую стену можно обкладывать несколькими способами. Имеется в виду расстояние между кирпичом и газобетонным блоком, а также наличие утеплителей, если предусмотрен зазор между стеной и облицовкой. Рассмотрим подробно каждый из них.

  1. Кладка без зазора
  2. Кладка с невентилируемым зазором
  3. Кладка с вентилируемым зазором

Плотная кладка без зазоров и вентиляции

Опасность скорейшего разрушения появляется в том случае, когда планируется использование отапливаемого помещения. То есть, разница температур внутри и снаружи дома существенно сократят сроки эксплуатации такого здания. При нагреве помещения изнутри, водяные пары начнут перемещаться через пористый газобетон наружу. При отсутствии зазора или утеплителя они будут накапливаться между газоблоком и кирпичом, разрушая оба материала. При этом конденсат скапливается неравномерно, что ускоряет процесс распада и деформации структуры газоблока. Наиболее экономически выгодным будет использование наружного утепления в виде минеральной ваты или отделки мокрой штукатуркой. Подобная отделка газобетона кирпичом (без зазора) применяется только к не отапливаемым зданиям.

Кладка кирпичом на расстоянии от газоблоков без вентиляции

В правилах СП 23-101-2004 (Проектирование тепловой защиты строений) имеется предписание о принципе расположения слоёв между стеной и поверхностью облицовки, в котором говорится, что чем ближе к наружному слою стены, тем паропроницаемость материала должна быть ниже. В соответствии с пунктом 8.8 слои с большей теплопроводимостью и паропроницаемостью должны располагаться ближе к наружной поверхности стены. Английские специалисты после проведения ряда исследований объяснили, что надо располагать слои так, чтобы паропроводимость к наружному слою повышалась с разницей не менее, чем в 5 раз от внутренней стены. Если выбирается этот способ облицовки, то согласно правилам пункта 8.13 толщина невентилируемого промежутка должна быть не менее 4см, при этом слои рекомендуется разделять глухими диафрагмами из негорючего материала на зоны по 3м.

Отделка газобетона кирпичом с вентилируемым пространством

Этот способ облицовки наиболее рациональный с точки зрения технических характеристик материалов и долговечности строения. Однако возведение подобной конструкции должно производиться по определённым правилам (СП 23-101-2004 пункт 8.14).

Рассмотрим, как обложить дом из газобетона кирпичом с вентилируемым зазором между кладками по всем правилам. Воздушное пространство должно иметь толщину не менее 6см, но не превышать 15см. При этом теплоизоляцией служит сама газобетонная стена. Если этажность строения выше трёх, то в зазоры ставятся (1 раз на 3 этажа) перфорированные перегородки для рассечки потока воздуха. В кирпичной кладке должны быть сквозные вентиляционные отверстия, общая площадь которых определяется по принципу: на 20кв.м площади 75кв.см отверстий. При этом отверстия, находящиеся внизу, делают с небольшим уклоном наружу для отвода конденсата из полости стены.

В том случае, если планируется утеплить газобетонную стену дополнительно до воздушной прослойки, то для этой цели используются теплоизоляционные материалы, плотность которых не менее 80-90 кг/м3. Сторона утеплителя, соприкасающаяся с прослойкой воздуха, должна иметь на поверхности воздухозащитную плёнку (Изоспан А, AS, Мегаизол SD и другие) либо другую воздухозащитную оболочку (стеклоткань, стеклосетка, базальтовая вата). Не рекомендуется использовать в качестве утеплителя эковату и стекловату, так как эти материалы слишком мягкие и недостаточно плотные. Также не разрешается применять пенопласт и ЭППС ввиду их горючести и паронепропускных характеристик. Когда осуществляется облицовка стен из газобетона кирпичом с дополнительным утеплителем на газоблоки, не применяются мягкие, неплотные, горючие материалы. Паропроводимость этих материалов должна быть довольно высокой, чтобы избежать образования конденсата.

Подводим итоги

Итак, какие же выводы можно сделать о способах облицовки газобетонных стен кирпичом? Для удобства сведём особенности каждого способа облицовки в таблицу:

ХарактеристикиОблицовка без зазораОблицовка с зазором без вентиляцииОблицовка с вентилируемым зазором
Кирпичная кладка+++
Защита газобетонной стены от внешних воздействий+++
ТеплоизоляцияНесущественное увеличениеУвеличение (сопротивление кирпичной кладки), уменьшение (повышается влажность газобетонной стены)Нет увеличения (вентиляция пространства между стенами)
Сроки эксплуатации, разрушение зданияПроисходит сокращение срока использования на 60%.Сокращение из-за влажности и конденсата.Не снижение или увеличение по причине отсутствия конденсата и регулируемой циркуляции воздуха.
Расходы на возведениеУвеличиваются затраты на фундамент, расширение (до 15 см), кирпич, раствор, гибкие соединения.Увеличиваются затраты на фундамент, расширение (до 19 см), кирпич, раствор, гибкие соединения.Увеличиваются затраты на фундамент, расширение (до 21 см), кирпич, раствор, гибкие соединения.
Рентабельность и целесообразностьЭкономически невыгодна по причине снижения теплоизоляции и срока эксплуатации.Отсутствие особой выгоды в большинстве случаев. Целесообразна только при ровном умеренном климате, не требующем отопления здания изнутри.Экономически мало выгодна, но целесообразна в случае необходимости кирпичной облицовки снаружи отапливаемых строений.

Таким образом, обкладывая газобетонную стену кирпичом, значительно сэкономить на материалах не удастся, увеличить теплоизоляцию также не получится. Единственные положительные аспекты – респектабельный внешний вид и увеличение срока службы, но это достигается при условии правильной организации строительных процессов, применении материалов и технологий, рекомендованных СП 23-101-2004.

Видео: как правильно облицевать стену из газобетона кирпичом

вент зазор, пирог стены из газобетона с облицовкой кирпичом, оконных проемов

Газобетон – материал особенный, благодаря пористой структуре, коэффициент его теплопроводности приближен по этому показателю к нарезанной поперёк волокон хвойной древесине. Это свойство повышает теплоэффективность ограждающих конструкций, но оно же является и ахиллесовой пятой, так как ячеистый материал неизбежно становится гигроскопичным и требует принятия соответствующих мер.

Идеальный вариант защиты — кирпич, который нередко используют для отделки фасадов. Обсудим особенности облицовки кирпичом дома из газобетона: расскажем о способах выполнения, их преимуществах и возможных недостатках.

Блочный газобетон – современный конструктивный материал, при невысокой себестоимости кубометра кладки обладающий прекрасными теплоизоляционными качествами и небольшой массой. Из-за открытых пор, образующихся вследствие реакции газообразователя с гидроксидом кальция, в толще затвердевшего камня может накапливаться влага. Она снижает уровень морозостойкости кладки и приносит множество других проблем, поэтому стены и нуждаются во внешней облицовке. Тем более что внешний вид неотделанной стены смотрится неэстетично, и многим не нравится.

Для отделки могут применяться любые материалы: от декоративного окрашивания — до монтажа длинномера типа сайдинга или вагонки. Можно и штукатурить, но большинство заказчиков сходятся во мнении, что лучший вариант отделки – это облицовка кирпичом дома из газобетона.

Вот в чём достоинства такого выбора:

  1. Кирпич – материал самый долговечный, его срок службы исчисляется не десятками лет, а веками.
  2. Обладает отменной механической прочностью и морозостойкостью.
  3. Кирпичная кладка лучше всего защищает фасад от ветра, что особенно актуально при его утеплении минеральной ватой.
  4. Облицовку можно производить как в процессе возведения стен, так и после — главное, чтобы это позволяла ширина фундамента.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Примечание: Кладка может свешиваться на ¼ ширины уложенного ложком вперёд кирпича (это 3 см), но нужно ещё учесть такое же расстояние для вент зазора.

Схема опирания кирпичной облицовки на фундамент

Одно из достоинств — эстетичный внешний вид кирпича. Для облицовки можно использовать варианты в цветном исполнении, с рельефом, глазировкой, торкретированной поверхностью, а также кирпичи, выполненные в нескольких оттенках для осуществления баварской кладки – вроде той, что показана на фото снизу.

Такая облицовка улучшает эстетику газобетонного фасада, значительно увеличивает срок его службы. Насколько именно — зависит от соблюдения технологий, о которых и будет рассказано в этой публикации.

Всего существует четыре технологических варианта исполнения облицовки по газобетону. Два из них предусматривают вентиляционный зазор, а два обходятся без него. При этом утеплитель может присутствовать в пироге стены или теплоизоляция не предусматривается. Представим эти четыре схемы, и прокомментируем их с точки зрения теплоэффективности и экономичности стен.

Способ предполагает возведение стенки в полкирпича параллельно основной из газобетона, с закладкой в междурядное пространство армирующей сетки (когда кладка производится одновременно) или анкеров, если приходится облицовывать уже готовые стены.

Казалось бы, чего проще: воздух является хорошим теплоизолятором и не требует дополнительных расходов. По идее, вариант должен получиться выгодным – но так ли это?

Воздушный зазор имеется, а утеплителя нет

Вот основные недостатки такой облицовки:

  • Чтобы теплозащита получилась качественной, толщину прослойки воздуха требуется рассчитывать, как и в случае с любым другим теплоизоляционным материалом. Чересчур активный воздухообмен тёплого воздуха с холодным вообще не даст никакого эффекта.
  • В отсутствие в пироге теплоизоляционного материала, стены приходится проектировать более толстыми. Следовательно, опорная база для стен должна быть более широкой, что повлечёт увеличение расходов на фундамент и анкеровку кладки.
  • Ничем не заполненные, образованные двумя стенками колодцы, заселяются насекомыми и грызунами, от которых даже установленные на продухи сетки не всегда спасают.

Это лучший вариант структурирования стены, при котором в её пироге присутствует и вентиляционный зазор, и утеплитель. Применяют этот способ при использовании любой разновидности минеральных ват, отличающихся высокой паропроницаемостью.

Структурирование стены с минераловатным утеплением

Если учесть, что повышенная паропроницаемость характерна и для газобетона, то эти два материала «нашли друг друга». Себестоимость стен при таком раскладе получается выше, но расчётная толщина меньше.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Примечание: Сегодня усиленно рекламируют такой утеплитель, как вспененный полистирол. Не станем оспаривать его достоинств, однако отметим, что для образования вентзазора нужна специальная опалубка. Вкупе с высокой ценой оборудования для заливки, себестоимость стен возрастёт почти вдвое.

Отсутствие воздушного промежутка под облицовкой утепляемой стены возможно только когда применяется листовой полимерный материал (пеноизол, ЭППС, ЭППУ) или пеностекло.

Вариант с утеплителем без вентиляции

При этом характеристики стен нисколько не ухудшаются, а их толщина ещё уменьшается, что даёт выгоду на устройстве фундамента.

Четвёртый вариант конструирования стены предполагает простую облицовку без утепления и устройства вентилируемого промежутка. Многие, кто строит дома самостоятельно, применяют этот способ, не понимая, что он не обеспечит стенам ни теплоизоляционные свойства, ни той самой долговечности, о которой говорилось выше. Почему?

Укладка кирпича вплотную, без зазора

  • В отапливаемом помещении всегда образуются пары, которые проникают в толщу стен. Если нет выхода, они накапливаются и конденсируются, и могут разрушить газобетонную кладку даже быстрее, чем если её оставить совсем без облицовки. Лучше всего этот способ отделки подходит для неотапливаемых помещений, которым требуется придать благородный вид.
  • Тех, кто строит жилые дома, этот способ привлекает тем, что здесь меньше затрат на связи. Но чаще такой выбор связан с недостаточной толщиной фундамента уже эксплуатируемого дома, фасад которого решили обновить за счёт кирпичной облицовки.
  • Нужно понимать, что коль для пара нет выхода, то и его вход в толщу ячеистобетонной стены должен быть ограничен. Это нивелируется не только применением пароизоляционных мембран, но и выбором непроницаемых для пара отделочных материалов.


Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Внимание: Увлажнённая конденсатом газобетонная кладка гораздо хуже сопротивляется теплопередаче. Думаем, это очевидный ответ на вопрос, можно ли газоблок облицовывать кирпичом без вент зазора.

Выше говорилось о способах устройства кирпично-газобетонных стен, в которых присутствуют и варианты с теплоизоляцией, и без неё. Так нужен ли утеплитель между газобетоном и кирпичом?

Вообще, стены толщиной от 300 мм с точки зрения тепловой эффективности — вполне нормальный вариант для многих регионов страны. Чтобы доутепление было целесообразным и не потянуло за собой ряд ненужных расходов, его необходимо подтвердить теплотехническим расчётом.

Однако многие строят свои дома самостоятельно, без какой-либо проектной документации. Нужно иметь в виду, утепление стены с применением материалов с низким коэффициентом паропроницаемости может спровоцировать увлажнение кладки под утеплителем. Чтобы этого не случилось, толщина утеплителя должна быть такой, чтобы она обеспечила минимум половину общего термосопротивления стены. Это можно определить только расчётом.

Чтобы не рисковать, лучше использовать для утепления минеральную вату, сквозь которую пары проходят ещё быстрее, чем через газобетон. Главное — не забыть про отверстия для воздухообмена в кирпичной кладке, а минвату можно взять любой толщины.

Пирог стены: газобетон, утеплитель и облицовочный кирпич

Ширина фундамента, на который всё это должно опираться, зависит от того, какая толщина стен из газобетона при облицовке кирпичом.

Если уж существует несколько вариантов структурирования стенового пирога, то и набор технологических операций в том или ином случае будет разным. Всё зависит от того, производится облицовка параллельно с кладкой блоков, или отделка осуществляется позже.

В процессе нового строительства обе кладки можно возводить одновременно, по всей толщине стены. При этом фундамент сразу заливается необходимой для этого ширины, верхний обрез цоколя обязательно гидроизолируется в два слоя. Обычно это наклеенный на битумную мастику рулонный материал.

Кто занимается такой работой впервые, неизбежно столкнётся с вопросом: «Надо ли всё делать одновременно, или следует первым выводить что-то одно: кладку из газосиликата или кирпича?». По форматам эти два материала несопоставимы. Кирпич мельче, в такой кладке больше швов на погонный метр высоту и они более толстые.

Бетонный блок по размерам более крупный, и чаще монтируется на клей, а не на раствор. Разницу усадок могут компенсировать только гибкие связи, они же позволяют реализовать все три перечисленных варианта.

Строительные нормативы на счёт порядка возведения особых указаний не дают, но существующая технологическая карта предусматривает сначала возведение основных стен, а потом уже их облицовку с утеплением и устройством воздушного промежутка шириной 30 мм. При этом необходимо выполнение таких технологических операций:

  1. установки причального шнура с его последующей переустановкой;
  2. раскладки вдоль стены кирпича;
  3. изготовления или подачи готового раствора;
  4. укладки связей для перевязки двух стенок;
  5. укладки самих кирпичей;
  6. расшивки кладочных швов;
  7. контроля правильности кладки.

Для облицовки берут цельный кирпич, и кладут его с перевязкой швов на протяжённости ряда. Продухи для обеспечения вентиляции стен устраиваются в нижнем и верхнем (подкарнизном) рядах кладки. В каждом из них и на всех стенах должно быть минимум по 4 таких отверстия. Максимальное расстояние между ними – 4 м.

Нижние продухи можно сделать посредством укладки щелевого кирпича на ребро, так, чтобы воздух мог проникать в стеновое пространство сквозь щели. Некоторые мастера для устройства продухов оставляют незаполненными раствором вертикальные швы, что возможно благодаря ограничительной рейке.

Разницу усадки двух материалов обеспечит применение гибких связей. Вот какие варианты могут использоваться в их качестве:









Материалы для связки стенКомментарий
Скобы из нержавейки.Это закладные элементы, изготавливаемые из арматуры диаметром 4-5мм. Они имеют отогнутые в разных плоскостях концы, которые закладывают в каждый третий ряд облицовки с шагом 0,75 м.
Анкеры из нержавеющей стальной полосы.Имеют Т-образную форму, удобно закладывать в вертикальные ряды.
Сетка арматурная.Для связки стенок может использоваться стальная сетка из проволоки диаметром 4-6 мм, с ячейкой не более 50*50 мм. Её устанавливают в каждом шестом ряду кирпичной кладки.
Арматура из базальтопластика и стеклопластика.Закладывают в швы через каждые 60 см по высоте стенки, и через 70-100 см по длине ряда. Глубина закладки 70-80 мм, на 1 м² расходуется порядка 4-5 штук.
Turbo Fast – спиралевидные гвозди.Один конец забивается в тело газобетона, а другой – закладывается между рядами кирпича. Их удобно использовать, когда облицовка дома из газобетона кирпичом производится после возведения стен.
Перфорированная стальная полоса.Устанавливается в процессе кладки газобетона и имеет толщину не более 2 мм. Полосу прибивают к горизонтальной поверхности гвоздями, оставляя вторые концы свободными – их потом заводят в швы кирпичной кладки. Расходуется 4 шт/ м².
Гвозди нержавеющие.Имеют длину от 120 мм, и забиваются в газобетон попарно, под углом друг к другу (45 градусов).

Если решено построить дом из газобетона, либо облицевать самостоятельно кирпичом уже эксплуатируемый, уделите особое внимание качеству заполнения швов раствором, вертикальности кладки, правильности положения в ней каждого кирпичика. Очень важно соблюдать толщину швов, которая по вертикали должна составлять 10 мм, а по горизонтали – 12.

Пример анкерования базальтопластиком

Те швы, в которые закладываются связи, могут быть чуть толще. В этом случае, их размер зависит от диаметра анкера или толщины полосы. Шов по толщине может превышать этот размет на 4 мм, но его максимальная толщина не должна быть более 16 мм. Только соблюдение этих требований даст нужный результат и позволит получить тёплый и эстетичный фасад.

Газоблок + кирпич – третий не лишний?

16.09.2017

Анонс


Повышение доступности жилья — один из двигателей прогресса в стройиндустрии. В условиях конкуренции застройщики стремятся удешевить стоимость строительства за счет использования современных материалов и технических решений. Например, в последние десятилетия в нашей стране приобрели большую популярность двуслойные стены из газобетона и кирпича. Облицовочный кирпич придает таким домам внешнюю респектабельность, а легкий и достаточно теплый газобетон отвечает, в том числе за комфорт. Двуслойные стены дешевле полностью кирпичных, а архитектурный образ здания мало отличается. Но обеспечат ли такие стены необходимый комфорт и долговечность дома? Разбираемся вместе с экспертом – техническим специалистом по коттеджному и малоэтажному строительству Корпорации ТЕХНОНИКОЛЬ Александром Плешкиным.


Прослужит ли дом нескольким поколениям?


Долговечность – один из важных критериев при выборе технологий для строительства дома. В «Инженерно-строительном журнале» №8 (2009 г) приведены результаты испытаний газобетонных стен с кирпичной облицовкой. Выводы ученых удивляют: срок службы такой стены составляет от 60 до 110 и более лет. Испытывались материалы одного качества в условиях одного и того же региона. Как выяснилось, столь заметная разница обусловлена технологией применения материалов: увеличить срок эксплуатации позволяет наличие вентиляционного зазора между слоями стены.


«Вообще отделка газобетона кирпичом без вентиляционного зазора допустима только для неотапливаемых помещений. В противном случае из-за разницы температур теплый и влажный воздух из помещения устремится наружу, пар начнет скапливаться между слоями стены, разрушая и кирпич, и газобетон, — комментирует Александр Плешкин. – Наличие вентилируемого зазора, обеспечивающего циркуляцию воздуха (его вход у основания и выход наверху здания) позволит беспрепятственно выводить водяной пар. Срок службы таких домов заметно выше при наличии слоя теплоизоляции, который выведет точку росы из газобетона и увеличит термическое сопротивление всей конструкции».


Погода в доме


В том, что погода в доме главней всего, мало кто сомневается. Считается, что для теплых регионов стена из газобетонных блоков толщиной 300–400 мм и облицовкой в половину лицевого кирпича укладывается в нормативные требования. Соответственно, в доме должно быть достаточно тепло и уютно. Но по факту зимой жители таких домов очень часто вынуждены использовать всевозможные системы отопления. Особенно в первые годы после постройки, когда дом «сохнет». Учитывая стоимость электроэнергии, для семейного бюджета такой способ согреться может быть накладным. Кроме того, из-за нарушения температурно-влажностного режима дома микроклимат в помещении становится хуже, образовывается сырость и плесень, особенно в углах и на стыках «пол-стена-потолок».


Результаты проводимых Службой Качества ТЕХНОНИКОЛЬ тепловизионных обследований объектов говорят о некоторых проблемах, связанных с эксплуатацией домов, построенных по технологии, которая не предусматривает вентиляционный зазор и слой утепления между газобетоном и кирпичом. 


Например, в марте 2016 года проводилась тепловизионная съемка фасада жилого комплекса в Московской области.


Данные по объекту:


Тип объекта – таунхаус на стадии эксплуатации;


Дата сдачи объекта – 30 ноября 2015 г.;


Дата проведение осмотра – 1 марта 2016 г.;


Конструкция фасада – газобетонный блок (400 мм) + облицовочный кирпич (120 мм), утепление отсутствует. 




 

 


   Рисунок 1. Общий вид здания и показания температуры и влажности


«Влажные пятна на фасаде могут быть следствием двух причин, — комментирует Александр Плешкин. — Возможно, мокрые процессы внутренних отделочных работ производились в холодное время года. В данный период кладка еще не успела высохнуть. Также отсутствуют входные и выходные отверстия для создания движения воздуха в вентилируемой кладке. Паровоздушная смесь, которая проникла в кладку из внутренних помещений, встретилась с отрицательной температурой на улице, в результате чего выпала в виде конденсата — воды. Вторая возможная причина образования локальных пятен — наличие мощных теплопроводных включений, которые и выступили в качестве источника конденсата в большом количестве».


Почему расчеты расходятся с фактами? 


При использовании тепловизионной съемки были выявлены тепловые потери в местах примыкания стены к кровле, цокольной части, и по контуру плит перекрытий по всему периметру фасада.


«Это связано с тем, что на стадии проектирования теплотехнический расчет фасада соответствует нормам по тепловой защите зданий. Нюанс в том, что расчеты проводятся по глади фасада, без учета мест сопряжений и примыканий плит перекрытий со стеной, окнами, устройства армапоясов и мауэрлатов и так далее. Также не стоит забывать про учет теплопотерь при укладке блоков – в швах в большинстве случаев используется классический цементно-песчаный раствор, реже — специальный тонклослойный клеевой, но вне зависимости от выбранного типа данный способ соединения блоков создает мосты холода, которые и могут спровоцировать конденсацию паров остаточной строительной влаги. Если еще учитывать теплопотери через неоднородности, то получаем уже критические значения», — объясняет эксперт.


Результаты расчетов с учетом всех теплопроводных включений будут приведены ниже, но то, что они будут отличаться от изначальных расчетов, подтверждается результатами тепловизионной съемки.






 

 Рисунок 2. Тепловизионная съемка 1 этажа

 

    Рисунок 3. Тепловизионная съемка 2 этажа


На фотографиях ниже наглядно демонстрируются теплопроводные включения (так называемые тепловые мосты) через плиты перекрытия, цоколь и сопряжения фасада с крышей, а также нарушения технологии строительства.




 

 

   Рисунок 4. Тепловые потери


Ситуацию хорошо объясняют результаты испытаний тепловой однородности двуслойных стен, проведенных экспертами из Санкт-Петербурга А. С. Горшковым, П. П. Рымкевичем и Н. И. Ватиным. Они провели расчет приведенного сопротивления теплопередаче наружных стен типового многоквартирного жилого здания с конструктивной монолитно-каркасной схемой и двухслойными стенами из газобетона с наружным облицовочным слоем из кирпича в Санкт-Петербурге. Полученное значение 1,81 м2•°С/Вт не соответствуют не только требуемым 3,08 м2•°C/Вт, но и даже минимально допустимым нормативным требованиям 1,94 м2•°C/Вт. Различия в коэффициентах теплотехнической однородности исследователи объясняют различиями использованных в проекте конструктивных решений, количественного и качественного состава теплопроводных включений с учетом их геометрической формы. То есть учитываются все так называемые мостики холода, которые присутствуют в проекте: вид и материал крепежа, плиты перекрытия, стыки, обрамления и примыкания к стенам и окнам и так далее. Довольно распространен случай, когда теплотехническая неоднородность стеновой конструкции на реальном объекте еще ниже расчетной, потому что зависит от качества монтажа: наличие трещин, разломов, выбоин и иных дефектов изделий из газобетона может приводить к перерасходу строительного раствора, который выступает в качестве дополнительного теплопроводного включения, не учитываемого при расчете.  




 

 Рисунок 5. Конструктивное решение наружной двухслойной стены


В итоге мы получаем, что фактический коэффициент теплотехнической однородности существенно меньше, чем расчетное значение. Разница может составлять до 47%. Приведенное сопротивление теплопередаче подобных конструкций может быть меньше нормативного значения до 70%, что требует либо увеличивать толщину газобетонных блоков в составе двухслойной стеновой конструкции, либо использовать промежуточный слой из теплоизоляционных материалов.




 

 Рисунок 6. Схемы расчетных фрагментов наружной двухслойной стены


«Результаты испытаний говорят о том, что закладываемый при проектировании коэффициент теплотехнической однородности 0,9 для стен из газобетона и кирпича для многих случаев является завышенным. Кроме того, проектировщики пользуются необоснованными значениями теплопроводности газобетона, — комментирует Александр Плешкин. — По факту такая конструкция не обеспечивает необходимое термическое сопротивление стен. Создать комфортный микроклимат, сократить размеры коммунальных платежей и повысить долговечность стен из газобетона и кирпича можно, благодаря включению теплоизоляции между газобетонным и лицевым (облицовочным) слоями. При выборе теплоизоляционного материала для конструкций такого рода особое внимание необходимо уделять значению сопротивления паропроницанию. Оно должно быть, как минимум на порядок меньше сопротивления паропроницанию несущего слоя наружной стены. Утепление стены из газобетона экономически обосновано и выгодно по сравнению с увеличением толщины газобетонной стены, при увеличении которого дополнительно нагружается фундамент и уменьшается полезная площадь помещений».


Влажность – важно ли это?


Хотелось бы отдельно отметить темы теплопроводности и влажности изделий из газобетона, которые являются сильными абсорбентами влаги, то есть могут впитывать значительное количество воды.


«Их фактическая влажность в начальный период эксплуатации может значительно превышать расчетную, это связано не только с процессом производства, транспортировки и складирования материала, но и с мокрыми процессами, которые происходят в доме во время его стройки – заливка стяжки, выравнивание стен и так далее. В этой связи теплопроводность изделий из газобетона может оказываться выше по сравнению с принятыми в проекте расчетными значениями, т. к. теплопроводность материала зависит от содержания влаги. Сложно поддается прогнозу количество лет через которое дом «выйдет» на проектные показатели. Это будет зависеть от климата, условий эксплуатации помещения и конструктивного решения стены – наличие вентиляционного зазора и правильно подобранных изоляционных слоев с точки зрения паропроницаемости. При грамотно спроектированной и выполненной конструкции выход на рабочий режим такой конструкции не должен превышать одного – двух лет», — комментирует Александр Плешкин.


Следует обращать пристальное внимание на вопрос испытания коэффициентов теплопроводности газобетона, а именно на условия влажности, при которых проводятся испытания.


Показатель теплопроводности определяют по ГОСТ 7076-99 «МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме». В данном документе расчеты проводятся для материала в сухом состоянии, не регламентируется при какой весовой влажности материала необходимо проводить испытания. Некоторые производители газобетона проводят испытания на теплопроводность материала ссылаясь на ГОСТ 31359-2007 «Бетоны ячеистые автоклавного твердения», в котором указаны значения весовой влажности, при которой производятся измерения: для условий «А» весовая влажность составляет 4%, для условий «Б» — 5%.


Согласно СП 23-101-2004 «Проектирование тепловой защиты зданий» Приложение Д (или СП 50.13330.2012 «Тепловая защита зданий», Приложение Т) весовая влажность газобетона значительно превышает значения ГОСТ 31359-2007: для газо- и пенобетона плотности 1200;1000;800 весовая влажность составляет: 15% для условий «А» и 22% для условий «Б».


Расчетный коэффициент теплопроводности газобетона значительно занижен по сравнению с фактическим. Данный факт связан не только с особенностями использования материала в условиях влажности, но и с самой методикой испытаний теплопроводности газобетона — влажность при испытаниях снижена в 3,75 — 4,4 раза.


Такая разница в значениях влажности говорит о том, что после возведения конструкции газобетон на протяжении определенного периода времени достигает нормируемых значений равновесной весовой влажности, которая значительно выше той, при которой проводятся испытания теплопроводности материала.


В результате фактическое значение сопротивления теплопередаче здания не совпадает с расчетным. Данный факт говорит о снижении энергоэффективности здания и увеличении эксплуатационных затрат на отопление и кондиционирование.


«Таким образом, с помощью газобетона и кирпича вполне можно создать респектабельный, теплый и долговечный дом, — резюмирует Александр Плешкин. — Но только при строгом соблюдении технологии проектирования тепловой оболочки здания с учетом всех теплопроводных включений, корректных показателей влажности газобетона, которую он приобретет в процессе эксплуатации, а также при обязательном наличии теплоизоляционного слоя и вентиляционного зазора».

Как выполняется облицовка дома из газобетона кирпичом

Облицовка стен из газобетона кирпичом

Одним из методов улучшения эксплуатационных качеств строений, является облицовка дома из газобетона кирпичом. Рассмотрим подробно ее разновидности и технологию выполнения работ.

Содержание статьи

Для чего нужна облицовка

Газобетонные и газосиликатные блоки — отличный строительный материал, обладающий небольшой массой отличными теплоизоляционными свойствами при небольшой цене кубического метра кладки. Технология их производства проста — готовится смесь извести, песка и специальной добавки для образования пор, изделия блоки формуются и затвердевают в автоклавах.

Разрушенный из-за повышенной влажности газобетонный блок

  • Но у него есть один недостаток: поры накапливают воду, поэтому морозостойкость невелика. Стены из него могут промокнуть насквозь и пропустить влагу в помещение, особенно при затяжных косых дождях. Оговоримся, часто газобетон путают с пенобетоном.
  • Это немного разные материалы, но их характеристики почти похожи – правда, пенобетон имеет закрытые поры, поэтому немного меньше впитывает влагу. Не будем учитывать этот нюанс, и в нашем обзоре рассмотрим их как одну разновидность легких силикатных блоков.
  • Многим не нравится и экстерьер зданий сооруженных из газобетона, даже если их окрасить. Поэтому делается облицовка дома из газобетона. Материалов для ее выполнения существует множество — вагонка, сайдинг, блок-хаус, плиты из керамики или натурального камня, в конце концов используют обычное оштукатуривание.

Но большинство хозяев на вопрос: «Дом из газобетона — чем облицевать?», отвечают однозначно — кирпичом.

Достоинствами выбора этого материала являются:

  • Долговечность — кирпичная кладка служит не десятки, а сотни лет;
  • Отличная морозостойкость;
  • Механическая прочность;
  • Внешний вид. Для облагораживания внешнего вида дома, можно кроме обычного облицовочного камня выбрать глазурованный, или кирпич ручной формовки.

Облицовку могут проводить одновременно с возведением стен (как на видео в этой статье) или у уже эксплуатирующихся домов. Во втором случае, кроме того, что фасады домов из газобетона улучшают внешний вид и защищаются от воздействия атмосферных осадков и морозов, дополнительно может проводиться и тепловая реабилитация строения. При проведенной облицовке увеличивается и срок службы здания.

Виды облицовки

Различают четыре вида облицовки:

  1. облицовка без зазора;
  2. облицовка с воздушным вентилируемым зазором без утеплителя;
  3. облицовка с заполнением зазора теплоизолирующим материалом и вентиляцией;
  4. облицовка с теплоизолирующим слоем без вентиляции.

Можно было бы выделить еще один — с воздушным зазором без вентиляции, но его нельзя рекомендовать, так как из-за скопления паров влаги происходит быстрое разрушение газосиликата. Если же речь идет о неотапливаемом строении, где этот процесс невозможен, то возникает вопрос: «А зачем улучшать термоизоляционные свойства стены воздушной прослойкой?».

О выгоде той или иной разновидности, ломают копья на различных строительных форумах уже давно. Рассмотрим особенности и эксплуатационные характеристики всех четырех типов конструкции облицованных газобетонных стен.

Облицовка без зазора

Облицовка без зазора

Этот тип конструкции не обеспечивает значительного прироста теплоизоляционных свойств, и увеличения долговечности конструкции. В отдельных случаях, газосиликат может прийти в негодность даже быстрее, чем вариант без облицовки (из-за тех же процессов что в стене с зазором без вентиляции).

Кстати, на втором фото статьи показан пример такого разрушения. Выбирать данный тип можно только в том случае, если нужно благородить вид неотапливаемого помещения. К достоинствам можно причислить несколько меньшую стоимость облицовки из-за отсутствия затрат на теплоизоляционный материал, и меньшего расхода металла на связи.

Иногда конструкцию выбирают как полумеру, несмотря на все недостатки, для отделки стен уже существующего здания — в случае, если его цоколь выступает за периметр стен достаточно чтобы обеспечить опору кирпичной кладке.

Облицовка с вентилируемым  зазором без утеплителя

Пример облицовки с воздушным зазором вентилируемым и связями в виде сетки

Это наиболее рекомендуемый, но не самый лучший вариант. В этом случае, оставляется промежуток между газосиликатной стеной и кирпичом.

Для удаления влаги в облицовке предусматриваются вентиляционные отверстия. Преимущество — воздух самый лучший теплоизолятор, лучше любых других материалов.

Но есть и минусы:

  • Для того чтобы обеспечить качественную теплозащиту, нужно точно просчитать толщину воздушной прослойки и расположение вентиляционных проемов. При излишнем воздухообмене, зашедший холодный воздух уменьшит эффективность теплоизоляции до нуля.
  • Такие стены толще, чем те, в которых используется специальный теплоизоляционный материал, следовательно, требуют больше материала для цоколя и связей.
  • Пустота между газобетоном и кирпичом заселяется грызунами и насекомыми. Поэтому в продухи нужно обязательно устанавливать мелкоячеистые сетки, которые защитят от нежелательных соседей.
  • Стены получаются толще, чем при выборе других вариантов конструкции.

С вентиляцией и заполнением зазора теплоизоляционным материалом

Кладка с вентилируемым зазором и утеплением минеральной ватой

Один из лучших вариантов. В зазор укладывается теплоизоляционный материал, одновременно обеспечивается и вентиляция пространства.

Этот тип конструкции используется, как правило, при выборе в качестве утеплителя матов и блоков из стекло- или минеральной ваты, или других подобных материалов, которые паропроницаемы. Толщина стен получается меньше. Себестоимость несколько выше из-за того, что в нее закладывается цена утеплителя, и затраты на его монтаж.

Совет!  Не выбирайте в качестве утеплителя жидкий пенополистирол. Хотя стоимость материала меньше, необходимость опалубки для образования воздушного промежутка и специального оборудования для заливки, увеличат затраты почти в два раза по сравнению с тем, если бы использовались простые листы.

Невентилируемый зазор с утеплителем

Утепление листовым пенополистиролом без воздушного промежутка

Можно облицевать дом из газобетона этим типом конструкции, если в качестве теплоизоляции стены будет применен непрозрачный для паров материал, чаще всего вспененный полистирол (пенопласт). Характеристики стен не хуже предыдущего варианта, кроме того упрощается теплотехнический расчет.

Часто к минусам конструкции относят то, что пенопласт сгораем, но это не совсем верно. Пожарная опасность стен с применением этого утеплителя не увеличивается потому, что строительный пенополистирол, благодаря введению в его состав специальных добавок, не поддерживает пламени.

К тому же, он скрыт двумя слоями абсолютно негорючего материала, возникнуть огню практически невозможно, если это все же произойдет, то в изолированном пространстве почти нет воздуха для поддержания горения.

Технология устройства облицовки

Технология устройства облицовки несколько отличается, в зависимости от того делается она для стен уже эксплуатирующегося здания, или проводится одновременно с его возведением. Рассмотрим оба варианта — причем подробная инструкция не может быть приведена. Все зависит от выбора материала, типа облицовки и особенностей дома.

Облицовка при строительстве нового строения

Пример одновременной кладки газобетона и кирпича

Фундамент возводится одновременно для кладок из обоих материалов, по всей толщине будущих стен. Гидроизоляция от цоколя также проводится для всего массива стены одновременно. Затем приступают к кладке стен.

Часто возникает вопрос — что первым выводить:

  • стену из кирпича;
  • из газосиликата;
  • делать все одновременно.

Дело в том, что у кирпичной кладки больше швов по высоте, и они толще. Газобетон вообще может вообще ложиться на клей. Получается разница усадок. Чтобы свести к минимуму их действие, на связи между слоями стен из разных материалов рекомендуют все три варианта (надо сказать, что СНиПы по этому вопросу ничего не указывают). Доводы порой взаимоисключающие.

На самом деле, правильно подобранные и изготовленные связи должны быть гибкими и не создавать в местах установки дополнительных напряжений, из-за которых образуются трещины. Да и сама усадка незначительна, если только речь не идет о домах с большим количеством этажей, но там принимаются особые меры для ее компенсации.

Совет!  При использовании клея для кладки газобетона, прочитайте его инструкцию, и уточните, совместим ли он с материалом связей. Если нет, то связи придется вклеивать отдельно, другим составом.

Облицовка домов из газобетона керамическим кирпичом, не отличается от работ по устройству обычной кирпичной кладки. Добавляется только установка связей, и, если используется утеплитель, осуществляется его укладка и закрепление.

Связи для скрепления газобетона и кирпича при облицовке нового строения

Стеклопластиковые связи одновременно крепящие пенопласт

Это обычные арматурные изделия. Их можно заготовить самостоятельно, из проволоки или прутка подходящего диаметра. Можно также использовать стальную ленту или другой прокат любого профиля (квадрат).

При этом, нужно придерживаться следующих условий:

  1. Сумма площадей поперечного сечения арматурных деталей должна быть не менее 0,5 см2 на квадратном метре кладки;
  2. Количество 3-5 шт. также на м2;
  3. Возле проемов и углов, на расстоянии 200-250 мм, устанавливают дополнительный ряд с шагом 250-300 мм.

Также можно использовать связи заводского изготовления, они обычно предполагают и одновременное закрепление утеплителя. Кстати, корме привычных стальных деталей сегодня все чаще используются стеклопластиковые изделия, не боящиеся коррозии.

Устанавливая связи в стену, нужно обеспечить их надежную анкеровку. Для этого они должны быть утоплены в раствор на расстояние не менее 10 диаметров.

Облицовка стен уже эксплуатирующегося здания

Облицовка уже возведенного дома

Облицовка газобетонного дома в этом случае, требует проведения дополнительных работ по обустройству фундамента для кирпичной кладки. Тип его не важен, главное чтобы он выдержал ее вес, все дополнительные нагрузки, такие как перекрытия, кровля и т. п. уже переданы на основной фундамент.

Поэтому не обязательно использовать сплошной ленточный. Если позволяет грунт, можно использовать столбчатый или простые в монтаже винтовые сваи. Для опоры кладки просто монтируются фундаментные балки. Кстати, по этой же причине и перемычки над проемами можно выбирать меньшего сечения.

Связи в этом случае крепятся на дюбеля. Если есть возможность, то можно в капитальной стене просверлить сквозные отверстия и зафиксировать прутья с внутренней ее стороны шайбами. Можно сажать прутья на клей в слепые отверстия.

Совет!  Не используйте обычный раствор. В этом случае, лучше крепить на клей, основанный на эпоксидной смоле.

Но лучше всего, использовать самоанкерующиеся болты, так как они быстро и надежно закрепляются в газобетонных блоках и швах между ними.

Вот и все наиболее важное об облицовке стен из газобетона кирпичом. Надеюсь, прочитав наш очерк, вы сможете выбрать оптимальный тип конструкции облицовки и материалы для нее. Если есть навыки то работу можно провести и своими руками, особенно если речь идет о даче или индивидуальном доме. В помощь вам  можем порекомендовать то, как делается  облицовка кирпичом дома из газобетона видео:

Пусть после строительства или ремонта ваш дом станет более теплым, уютным и красивым. Мы рады если помогли в этом нашей статьей.

10 ошибок при возведении стен из газобетона

Сегодня мы расскажем об ошибках, которые чаще всего допускают при сооружении газобетонных частных домов. Казалось бы, откуда взяться ошибкам? Ведь технология устройства зданий из газобетона детально продумана, есть национальный стандарт по ним*, ведущие производители блоков, в частности Ytong, предоставляют подробные инструкции, блоки легко укладывать и обрабатывать. Тем не менее, культура строительства в нашей стране всё ещё «хромает на обе ноги», и неверные решения при работе с газобетоном, увы, не редкость.

Негативные последствия этих ошибок – те же, что и в случае любой неправильно выполненной каменной кладки (из полнотелого кирпича, поризованной керамики, пенобетона и пр.). Главная проблема – трещины, которые распространяются по кладке. В принципе появление трещин, даже сквозных шириной до 2 мм в каменных наружных стенах, не считается признаком аварийного состояния здания**. Однако это может приводить к другим неприятностям:

  • Распространение трещин по наружной и внутренней отделке. Может потребоваться дорогостоящий ремонт.
  • Промерзание стен и, как следствие, увеличение затрат на отопление
  • Ухудшение микроклимата в жилых помещениях.
  • При самом неудачном исходе – нарушение целостности конструкции здания.

Появление трещин может быть вызвано целым рядом нарушений, допущенных строителями.

1.  Ошибки при сооружении фундамента

Фундамент в виде железобетонной плиты

Кладка из газобетона – не самая прочная на изгиб. И если фундамент, на который она опирается, недостаточно жесткий и устойчивый, имеет существенные отклонения по геометрии, не соответствует типу грунта и рельефу местности на участке, то кладка может в каких-то местах прогнуться и треснуть. Чтобы этого не произошло, нужно грамотно проектировать и качественно выполнять фундамент. При его сооружении следует учитывать:

  • Особенности грунта на участке: степень его пучинистости, уровень залегания грунтовых вод. Эту информацию можно получить только на основании инженерно-геологических изысканий. Метод «опроса соседей» крайне не точный, и полагаться на него нельзя.
  • Специфику рельефа местности: наличие уклона, перепадов по высоте.
  • Все нагрузки на основание. Их можно определить только с помощью расчёта, выполненного профессиональным конструктором.

Специалисты рекомендуют устраивать под газобетонным домом железобетонный фундамент. Хорошо работают малозаглубленные ленты или плиты, в том числе очень популярные сегодня утеплённая шведская плита (УШП) и утеплённый финский фундамент (УФФ, лента в сочетании с утепленными полами по грунту). Допустимы, помимо прочих, и фундаменты из блоков ФБС с обязательным обвязочным поясом по верхнему ряду, например, монолитным.

2.  Ошибки при укладке первого ряда блоков

Выравнивание блоков первого ряда

Первый ряд блоков задаёт геометрию всей кладки. Если выложить его недостаточно ровно, с отклонениями от нужных высотных отметок, со смещёнными диагоналями, то исправить ошибки последующими рядами не получится. Наоборот, ошибки будут только нарастать.

Блоки первого ряда укладывают на обычный цементно-песчаный раствор толщиной не более 20 мм. Но это не означает, что раствором можно выровнять сильные перепады по высоте на плоскости фундамента. Допустимое отклонение от линии горизонта – 30 мм. Если оно больше, придётся выравнивать фундамент (за счёт подрядчика, некачественно выполнившего свою работу) и только затем начинать кладку.

Небольшие перепады по высоте между соседними в ряду блоками устраняют шлифовальной доской или рубанком. Ровность кладки контролируют с помощью лазерного или оптического нивелира.

Первый ряд блоков обязательно нужно обезопасить от капиллярного подъёма влаги через фундамент. Для этого между стеной и фундаментом предусматривают гидроизоляцию – битумные рулонные и обмазочные материалы, полимерцементные составы и др.

Подробнее о работе с газобетоном можно узнать на курсах по строительству из Ytong

3.  Ошибки при выборе клеевого состава

Нанесение тонкошовного клеевого состава

Большая ошибка – возводить стены из газобетона с помощью обычного цементно-песчаного раствора, получая при этом ту же толщину шва, что и в традиционных каменных стенах – до 12 мм. Столь толстый шов приводит к существенным потерям тепла из дома, сводя на нет преимущество газобетона в энергоэффективности над другими каменными материалами. И наоборот, если использовать специальный клей для газобетона, толщина шва будет составлять всего 1-3 мм, теплопотери минимальны.

Обычный раствор вместо клея выбирают люди, которые хотят сэкономить, но неправильно оценивают возможные затраты. Растворный шов толще клеевого в 4 раза и потому расход на него в 4 раза больше. Притом стоимость обычной цементно-песчаной смеси в 2 раза дешевле, чем клея. В итоге – двойная переплата за обычный раствор. Плюс более высокие затраты на его транспортировку.

Клей для тонкошовной кладки Ytong

Другая ошибка – использовать дешёвый клей вместо более дорогого, но рекомендованного производителем блоков. Чем опасен дешёвый? В нём может быть большое содержание трёхкальцевого алюмината, из-за которого состав оказывается не сульфатостойким. Такой клей может со временем выкрашиваться и вызывать растрескивание кладки по шву. В связи с чем Ytong рекомендует использовать только клей под собственной торговой маркой. Потому что этот состав протестирован в ведущих немецких лабораториях, и его качество не вызывает сомнений. Подробнее о клее Ytong можно узнать по ссылке

4.  Ошибки при перевязке блоков

Кладка должна выдерживать изгибающие и срезающие усилия. Для этого нужно правильно перевязывать соседние ряды блоков. Согласно российским нормам***, величина перевязки блоков высотой 250 мм должна составлять не менее 40% от высоты блока. То есть не менее 100 мм. Немецкие нормы, на которые ориентируется Ytong, ещё строже – не менее 125 мм. Притом запрещено использовать в кладке обрезанные элементы короче 50 мм. А обрезок большего размера допустимо располагать на удалении 125 мм от шва между блоками нижнего ряда. Неправильно выполненная перевязка чревата образованием трещин.

5.  Ошибки при сопряжении несущих стен и перегородок

Сопряжение стен с помощью гибких связей

Недопустимо жёстко сопрягать несущие стены с перегородками, то есть перевязывать их блоками или, например, соединять обрезками арматуры, забитыми в стены. В месте такого сопряжения могут появиться трещины. Дело в том, что несущие и ненесущие стены нагружены по-разному и дают неодинаковую осадку. Чтобы компенсировать её, их сопряжение выполняют с помощью гибких связей (анкеров), допускающих небольшие деформации.

Перевязка блоками

Но друг с другом несущие стены (наружные и внутренние) и перегородки, напротив, должны соединяться жёстко – за счёт перевязки.

6.  Отсутствие армирования в подоконных зонах

Армирование подоконной зоны

Вопреки расхожему мнению, кладку из качественного газобетона армировать не обязательно. Однако всегда следует армировать подоконные зоны, поскольку в углах проёмов концентрируются серьёзные напряжения, и их нужно «снять». Для этого в подоконном ряду боков устанавливают арматуру: она должна выступать за границы проёма с каждой стороны на расстояние не менее 50 см. Обычно применяют два прутка стальной (реже – композитной) арматуры диаметром 8-10 мм. Прутки укладывают в предварительно выполненные штробы, а затем заливают цементным раствором или клеем для газобетона. При монтаже арматуры в раствор сечение штробы должно быть не менее 40х40 мм, а при монтаже в клеевой состав достаточно сечения 20х20 мм. Каждую штробу выполняют на расстоянии 50-60 мм от края кладки. Также допустимо армировать базальтовыми или стекловолоконными сетками.

Конструкция оконного проёма

Если же строители забыли про армирование подоконных зон, то, скорее всего, появления трещин в углах проёмов не избежать.

7.  Разрывы в армопоясе

Отсутствие армопояса под кровлей приводит к появлению трещин 

Нередко строители забывают про железобетонный армопояс, в частности, под перекрытием по деревянным балкам. Или допускают серьёзные ошибки при его устройстве. Например, в зоне крыши предусматривают армопояс только под мауэрлатом – брусом, который служит опорой для стропил. Но не делают его по фронтонам, то есть не замыкают его в неразрывный контур по периметру здания. В таком случае стропила распирают стены, и появляются трещины в кладке. 

Армопояс под мауэрлат

Вывод: необходимо продолжать армопояс по фронтонам, замыкая его. 

Работы по усилению конструкции дома после его возведения  

В крайнем случае – устранять распор за счёт дополнительных стоек под крышей.

Устройство армопояса при возведении здания

Армопояс нужен для распределения равномерной нагрузки на стены и фундамент здания. Армопояс устраивают в несущих стенах под перекрытиями и крышей. Обычно он представляет собой армированную железобетонную балку сечением не менее 100х100 мм. Эту балку сооружают, например, внутри U-образных газобетонных блоков или между стандартными блоками небольшой толщины (перегородочными). Чтобы дом не промерзал, армопояс закрывают с внешней стороны теплоизоляционными плитами (толщиной 30-50 мм), как правило, из пенополистирола.

8.  Несущий железобетонный каркас в малоэтажном здании

Некоторые заказчики считают газобетон недостаточно прочным материалом и потому при строительстве двух- или трёхэтажного дома предусматривают несущий каркас из монолитного железобетона, который заполняют газобетоном. Это неоправданное и нерациональное усложнение. Кладка из газобетонных блоков является несущей стеной, и потому пользы от такого каркаса нет. А вот вред – ощутимый. Железобетонная конструкция оказывается масштабным мостиком холода, её требуется утеплять. Лишние бетонные работы (опалубка, армирование, раствор) в сочетании с дополнительным утеплением, – всё это значительные траты денег и времени, которые совершенно не нужны.

9.  Паронепроницаемая наружная отделка

Разрушение отделки из-за применения паронепроницаемой штукатурки

Газобетон приходит на стройплощадку, имея повышенную влажность. Кроме того, он пропускает водяной пар, стремящийся из жилых помещений на улицу (чем ниже плотность блоков, тем выше их паропроницаемость). Большая ошибка – «запечатывать» стены из газобетона паронепроницаемой отделкой, например, цементной штукатуркой плотностью более 1300 кг/м3, тем более сразу после завершения кладочных работ. Стены не просохнут от строительной и производственной влажности, что обернётся снижением срока службы как самого газобетона, так и отделки.

Разрушение отделки из-за применения паронепроницаемой штукатурки

Последствия применения высокоплотной цементной штукатурки

Кроме того, не следует возводить кладку из облицовочного керамического кирпича вплотную к газобетонной стене: кирпич менее паропроницаем, чем газобетон. При сооружении такой облицовки оставляют вентиляционный зазор не менее 40 мм между ней и стеной. И обязательны гибкие связи из нержавеющей стали или стеклопластика между кирпичной и газобетонной кладками.

Крепление кирпичной облицовке к стене из газобетона

Другие популярные облицовочные материалы — декоративный бетонный камень и клинкерная плитка. Они также имеют низкую паропроницаемость, и если они будут закрывать более 25% площади фасада, то нужно предусматривать для них вентфасад с подсистемой.

Вентфасад поверх стены из газобетона

10.  Паронепроницаемая теплоизоляция

Если же нужно утеплить газобетонные стены, то безопаснее всего применять паропроницаемую теплоизоляцию – из каменного или стеклянного волокна. А вот с полимерными теплоизоляционными материалами (ЭППС, ППС, ППУ, PIR), имеющими очень низкую паропроницаемость, всё сложнее. В принципе их можно использовать, но с рядом оговорок:

Нельзя крепить их на свежую, не до конца высохшую кладку.

Толщина полимерного утеплителя должна обеспечивать не менее половины термического сопротивления ограждающих конструкций. Например, стену из блоков D500 толщиной 300 мм нужно утеплять плитами из экструдированного пенополистирола толщиной 100 мм и более.

Желательно теплоизолировать полимерными материалами дома, где в постоянном режиме работает приточно-вытяжная вентиляция, удаляющая из помещений избыточный водяной пар.

Подробнее о работе с газобетоном можно узнать на курсах по строительству из Ytong

 

* СТО НОСТРОЙ 2.9.136-2013

** Согласно СП 15.13330.2012

*** СТО НОСТРОЙ 2.9.136-2013

Ошибки при строительстве здания из газобетона

Облицовка газобетона кирпичом

Автоклавный газобетон является одним из тех материалов, который сочетает в себе конструкционные и теплоизоляционные свойства. Однако, необходимо помнить, что газобетонные блоки имеют приличное водопоглощение и отлично впитывают воду, а от увлажнения увеличивается теплопроводность (стены становятся холоднее), снижается прочность и сокращается долговечность ограждающей конструкции.

Главным фактором увлажнения являются внешние осадки, имеющие преимущественно кислотный характер и, разрушающе воздействующие на газобетон. Потому внешнюю часть газобетонных стен необходимо защищать от прямого попадания воды, путем выполнения наружной отделки.

Самыми распространенными способами защиты газобетона является оштукатуривание, облицовка кирпичом и устройство навесного вентилируемого фасада. В этой статье рассмотрим как выполняется облицовка газобетона кирпичом без вентилируемого зазора, и с воздушным вентиляционным зазором.

При выборе данной ограждающей конструкции, необходимо еще на этапе ведения фундаментных работ, рассчитать ширину фундамента, так чтобы на нем без свесов вместились газобетонные блоки и кирпич.

Достоинством данного решения является отсутствие так называемых влажных процессов – оштукатуривания, недостатком – существенное увеличение толщины фундамента.

Двухслойная наружная стена без вентиляционного зазора

Ограждающая конструкция состоит из внутренней основной стены из газобетона и наружной стены из облицовочного кирпича, которые вплотную соединяется с помощью анкеров путем перевязки кладкой.

Однако, стоить отметить, что облицовка газобетона кирпичом без вентилируемого зазора нарушает главный принцип размещения слоев в многослойной стеновой конструкции. Исходя из этого принципа слои должны быть расположены так, чтобы их паропроницаемость, в направлении к фасаду, увеличивалась бы, либо была бы одинаковой. У газобетона коэффициент паропроницаемости, составляет 0,17-0,23 мг/(м*ч*Па), а у облицовочного керамического кирпича,0,14 мг/(м ч Па), получается что при такой конструкции в зоне контакта газобетона и кирпича будет накапливаться влага.

Поэтому перед возведением стен, нужно рассчитывать паропроницаемость всех слоев ограждающей конструкции, определить эксплуатационную величину влажности стен, найти точку конденсации влаги, и просчитать, возможно ли полное испарение этой влаги в течении весенне–летнего периода. При расчете, следует также учитывать, что анкера и керамический кирпич, которые заходят в кладку, будут образовывать мосты холода в газобетоне.

И, даже не смотря на такие трудоемкие расчеты, все равно, невозможно предотвратить процесс более интенсивного разрушения газобетонных стен, так как газобетон и кирпич, обладающие неодинаковыми свойствами, находятся в плотном контакте и при этом будут подвергаться различным температурным и влажностным деформациям.

Испытания, проведенные ведущими производителями газобетона, показывают, что облицованная кирпичом стена из газобетона без вентиляционного зазора, под влиянием климатических факторов разрушается неравномерно. Наиболее интенсивно будет происходить процесс разрушения в наружной трети газобетонной стены, примыкающей к облицовочному кирпичу, поскольку именно в этой части будет накапливаться влага, а при минусовой температуре будет происходить ее промораживание. Поэтому более правильным и рациональным вариантом будет облицовка газобетона кирпичом с вентиляционным зазором между облицовочной и несущей стеной.

Двухслойная наружная стена с вентилируемым зазором

Стеновая конструкция устраивается с вентиляционным воздушным зазором шириной 40мм, между несущей основной стеной из газобетона и облицовочной кирпичной стеной. Для того, чтобы при выполнении кладки в зазор не попадала растворная смесь, в данное пространство помещают, подходящий по размеру переставляемый лист из легкого материала.

Соединение облицовочной стены с несущей стеной выполняется с помощью анкеров. Применяются стержневые анкеры из нержавеющей стали ∅ 3мм -4мм или анкерные пластины шириной 30мм -40мм.

Анкера, соединяющие несущий и облицовочный слои, должны иметь площадь поперечного сечения не менее 0,4 см2 на 1м2 стены или количество не менее 5-6 штук на 1 м2 кладки. В углах стен, дверных и оконных и проемах устанавливают по 3 -4 анкера на 1 мп стены, на расстоянии, 150мм -200мм от ее края. Анкера рекомендуется заделывать в несущую газобетонную стену, на глубину не менее 1/3 толщины кладки.

Облицовка газобетона кирпичом предусматривает наличие в облицовочном слое вентиляционных щелей – продухов, необходимых для циркуляции воздушной массы в прослойке и удаления из нее водяных паров. Продухи можно выполнить путем не заполнения раствором в нижних и верхних рядах облицовочной кладки части вертикальных швов. Количество продухов должно быть таким, чтобы общая их площадь составляла от 0,5 до 1% от площади стены.

Строительство дома стена КИРПИЧ 120 + ГАЗОБЕТОН. Преимущества, особенности, решение основных узлов

Приветствую вас, мои Читатели и Зрители строительного Блога “Путь домой”.

Сегодня разбираем технологию, которая встречается не часто. Но у нас она уже была применена. Есть свои особенности, о которых я расскажу. Также покажу решение с узлами в этой технологии.

Надеюсь, вам будет интересно 🙂

А поговорим мы о такой стене как полкирпича + газоблок как несущий материал. Если вы помнить, совсем недавно мы рассматривали похожую стенку. Я говорил, что, на мой взгляд, она самая честная. Когда кирпич, как конструкционный материал, держит все нагрузки, а газоблок, как утеплитель улучшает стенку по теплосопротивлению. То сегодня немного другая ситуация. Мы рассмотрим газоблок который выполняет роль как конструкционного материала так и утеплителя. И возникает вопрос: зачем тогда полкирпича внутри?

Полный вопрос: /Walterinc/ Строительство дома по системе КИРПИЧ+ГАЗОБЕТОН. Кирпич 120 мм , плотность и толщина по расчету. Преимущества, особенности, решение основных узлов.

Откуда же взялась такая стена? На самом деле тут ничего особенного! Давным-давно я делал видео, где говорил, что являюсь сторонником строительства инерционных домов. Домов, которые позволяют без источника тепла (при отключении газа, отсутствие электроэнергии) позволяет находится в комфортном состоянии в доме длительное время. То есть, дом, который накопил тепло в течении длительного времени продолжает его отдавать.
Инерционные дома также позволяют сглаживать суточные перепады температур. Особенно в межсезонье, когда днем температура +15° , а ночью -5°.

Фокин в своей книге писал, что если рассматривать кирпичную стену толщиной примерно 2 кирпича (510 мм), то в суточном регулировании температуры принимает участие где-то 8-10 см стены. В других книгах я находил несколько другую информацию. Об этом расскажу далее.

1:52 Откуда взялась такая стена?
5:05 Теплотехнический расчет
8:45 Полкирпича добавляет прочности?
9:55 План дома
13:04 Узел цокольной части
15:55 Узел над окном
18:05 Разбор графиков
23:25 Добавление полкирпича в теплотехнический калькулятор
30:55 Анкера

Вопросы пользователей

28:11 При стене кирпич 250мм + газоблок (утеплитель) какой шаг установки связей?
29:34 Стоит ли армопояс заводить на газоблок?
30:41 Какой конструктив такой стены? Как соединять слой кирпича с несущей стеной из газоблока?
32:00 Не ради рекламы, с каким производителями полнотелого кирпича вы работаете?
33:50 А такую стенку снаружи только штукатурят или все таки можно клинкерную плитку тоже?
34:45 Можно ли применить клинкерный полнотелый кирпич для такой стены с целью отделки в стиле лофт?
35:12 Есть ли уже построенные дома, реализованные проекты по таким технологиям?
39:09 Целесообразность устройства штукатурки между кирпичом и газоблоком для улучшения пароизоляции стены из газоблока, если да какие растворы рекомендуете?
39:59 Можно ли в стене 120мм кирпич + 100мм газобетон вместо кирпича использовать керамзитобетонные блоки, а между ними и газобетонными блоками — 30 мм ЭППС?
41:23 Как и чем перевязать газобетонную стену с кирпичом?

С Уважением, Александр Терехов

Правильное использование газобетона в автоклаве

16 октября 2008 г., 9:01 CDT

Получайте новости каменной промышленности на свой почтовый ящик

Подпишитесь на Masonry Messenger , чтобы получать ресурсы по каменной кладке и информацию, необходимую, чтобы оставаться в курсе.

Нет, спасибо

Икс

по
Ричард Э. Клингнер

Примеры автоклавных элементов из газобетона.Изображение любезно предоставлено Ytong International.

Блоки автоклавного ячеистого бетона (AAC) чаще всего укладываются с использованием тонкослойного раствора и могут использоваться для кладки несущих стен. Положения по проектированию каменной кладки AAC приведены в Кодексе MSJC, а требования к строительству — в Спецификации Объединенного комитета по стандартам кладки (MSJC). В этой статье кратко рассматривается производство AAC; проиллюстрированы практические примеры возведения кладки из ААК; Обобщены проектные положения MSJC для кирпичной кладки AAC; особое внимание уделяется практическому руководству по строительству каменной кладки AAC.

Автоклавный газобетон (AAC) — это легкий, похожий на бетон материал с множеством небольших закрытых внутренних пустот. Спецификации материалов для AAC предписаны в ASTM C1386. AAC обычно весит от одной шестой до одной трети веса обычного бетона и составляет от одной шестой до одной трети прочности. Подходит для несущих стен и стен с низким и средним этажом. Его теплопроводность составляет одну шестую или меньше, чем у обычного бетона, что делает его энергоэффективным. Его огнестойкость немного выше, чем у обычного бетона такой же толщины, что делает его полезным в приложениях, где важна огнестойкость.Из-за внутренних пустот AAC имеет низкую передачу звука, что делает его полезным с акустической точки зрения.

История AAC

AAC был впервые коммерчески произведен в Швеции в 1923 году. С тех пор его производство и использование распространились в более чем 40 странах на всех континентах, включая Северную Америку, Центральную и Южную Америку, Европу, Ближний Восток, Дальний Восток и Австралия. Благодаря этому обширному опыту было проведено множество тематических исследований по использованию в различных климатических условиях и в соответствии с различными строительными нормами.

В Соединенных Штатах современное использование AAC началось в 1990 году для жилых и коммерческих проектов в юго-восточных штатах. Производство простых и усиленных AAC в США началось в 1995 году на юго-востоке страны и с тех пор распространилось на другие части страны. Общенациональная группа производителей газобетона была сформирована в 1998 году как Ассоциация автоклавных газобетонных изделий (AACPA, www.aacpa.org). Положения по проектированию и строительству каменной кладки AAC приведены в Кодексе и Спецификации MSJC. AACPA включает одного производителя в Монтеррее, Мексика, и многие технические материалы доступны на испанском языке.AAC одобрен для использования в категориях сейсмического проектирования A, B и C Дополнением 2007 г. к Международным строительным кодексам, а также в других географических точках с одобрения местного строительного чиновника.

AAC может использоваться для изготовления неармированных блоков каменного типа, а также армированных на заводе панелей пола, кровельных панелей, стеновых панелей, перемычек, балок и других специальных форм. В этой статье рассматриваются в основном только каменные блоки.

Материалы, используемые в AAC

Материалы для AAC зависят от производителя и местоположения и указаны в ASTM C1386.Они включают некоторые или все из следующего: мелкодисперсный кварцевый песок; Летучая зола класса F; гидравлические цементы; кальцинированная известь; гипс; расширительные агенты, такие как тонкоизмельченный алюминиевый порошок или паста; и смешивание воды. Каменные блоки из AAC не имеют внутреннего армирования, но могут быть усилены на строительной площадке с помощью деформированной арматуры, размещенной в вертикальных ячейках или горизонтальных связующих балках.

Как производится AAC

Для производства AAC песок измельчается до требуемой степени измельчения в шаровой мельнице, если это необходимо, и хранится вместе с другим сырьем.Затем сырье дозируется по весу и доставляется в смеситель. В смеситель добавляют отмеренные количества воды и расширительного агента, и цементный раствор перемешивают.

Стальные формы подготовлены для приема свежей AAC. Если должны производиться армированные панели AAC, стальные арматурные каркасы закрепляются внутри форм. После перемешивания кашицу разливают в формы. Расширяющий агент создает небольшие мелкодисперсные пустоты в свежей смеси, которые увеличивают объем примерно на 50 процентов в формах в течение трех часов.

Общие этапы производства автоклавного газобетона.

В течение нескольких часов после заливки начальная гидратация цементных смесей в AAC придает ему достаточную прочность, чтобы сохранять форму и выдерживать собственный вес.

После резки газобетон транспортируется в большой автоклав, где завершается процесс отверждения. Автоклавирование необходимо для достижения желаемых структурных свойств и стабильности размеров. Процесс занимает от восьми до 12 часов при давлении около 174 фунтов на квадратный дюйм (12 бар) и температуре около 360ºF (180ºC), в зависимости от марки производимого материала.Во время автоклавирования устройства для нарезки проволоки остаются в исходном положении в блоке AAC. После автоклавирования их разделяют для упаковки.

Агрегаты AAC обычно помещаются на поддоны для транспортировки. Неармированные элементы обычно упаковываются в термоусадочную пленку, в то время как армированные элементы связываются только полосами с использованием угловых ограждений для минимизации потенциальных локальных повреждений, которые могут быть вызваны полосами.

AAC классы прочности

AAC производится с различной плотностью и соответствующей прочностью на сжатие в соответствии со стандартом ASTM C1386.Плотность и соответствующие значения прочности описаны в терминах «классов прочности» (см. Таблицу 1).

ТАБЛИЦА 1 — Классы прочности AAC
Класс прочности Указанная прочность на сжатие, фунт / дюйм2 (МПа) Номинальная объемная плотность в сухом состоянии, фунт / фут3 (кг / м3) Пределы плотности, фунт / фут3 (кг / м3)
AAC 2,0290 (2,0) 25 (400)
31 (500)
22 (350) — 28 (450)
28 (450) — 34 (550)
AAC 4.0 580 (4,0) 31 (500)
37 (600)
28 (450) — 34 (550)
34 (550) — 41 (650)
AAC 6.0 870 (6.0 ) 44 (700)
50 (800)
44 (700)
50 (800)
41 (650) — 47 (750)
47 (750) — 53 (850)
41 (650) — 47 (750)
47 (750) — 53 (850)

Типичные размеры блоков AAC каменного типа

Типичные размеры блоков AAC каменного типа (блоки каменного типа) показаны в таблице 2 ниже.

ТАБЛИЦА 2 — Размеры каменной кладки AAC
Тип блока AAC Толщина, дюймы (мм) Высота, дюймы (мм) Длина, дюймы (мм)
Стандартный блок 2-15 (50-375) 8 (200) 24 (610)
Jumbo Block 4-15 (100-375) 16–24 (400–610) 24–40 (610–1050)

Типичные области применения каменной кладки AAC

Кладка AAC может использоваться в большом количестве структурных и неструктурных применений.Например, в приложениях, используемых в проектах в Аризоне и Лас-Пальмасе, Мексика, тепловая и акустическая эффективность AAC делает его привлекательным выбором для ограждающих конструкций здания.

Конструктивное проектирование каменной кладки AAC Кладка

AAC спроектирована в соответствии с положениями Приложения A Кодекса MSJC (MSJC 2008), на который ссылаются коды моделей по всей территории Соединенных Штатов. Расчет кладки AAC аналогичен расчету прочности кладки из глины или бетона и основан на заданной прочности на сжатие.Соответствие указанной прочности на сжатие подтверждается испытанием кубиков AAC на сжатие с использованием ASTM C1386 при изготовлении каменных элементов из AAC. Подробное практическое руководство по проектированию с использованием каменной кладки AAC представлено в 5-м издании Руководства для дизайнеров каменной кладки (MDG 2007).

Комбинации изгиба и осевой нагрузки Кладка

AAC разработана для сочетания изгиба и осевой нагрузки с использованием тех же принципов, что и для расчета прочности глиняной или бетонной кладки.Номинальная грузоподъемность рассчитывается исходя из плоских сечений, растянутой стали при текучести и эквивалентного прямоугольного блока сжатия.

Выравнивающая станина и прокладки для первого ряда каменных блоков из AAC — первый ряд блоков из AAC укладывается на выравнивающий слой из раствора ASTM C270 типа M или S с использованием клиньев (при желании) для вертикального выравнивания и выравнивания блоков.

Укрепление и развитие армирования

Армирование в кирпичной кладке AAC состоит из деформированной арматуры, помещенной в залитые вертикальные стержни или связующие балки и окруженных цементным раствором.Требования к развитию и стыковке деформированной арматуры в растворе идентичны требованиям, применяемым для кладки из глины или бетона. Консервативно, материал AAC не учитывается при расчете покрытия на сопротивление раскалыванию.

Сдвиг и подшипник

Как и в случае с глиняной или бетонной кладкой, сопротивление сдвигу кладки AAC вычисляется как сумма сопротивления сдвигу, обусловленного самим AAC, и сопротивления сдвигу, обусловленного арматурой, ориентированной параллельно направлению сдвига. Поскольку обычная арматура стыка основания вызывает местное раздавливание AAC под поперечными проволоками, Кодекс MSJC требует, чтобы учитывался только вклад сдвига связующих балок с залитой арматурой.Чтобы предотвратить локальное раздавливание ААЦ, номинальные напряжения в нем ограничиваются заданной прочностью на сжатие. Когда элементы пола или крыши упираются в стены из AAC, также возможно разрушение края стены при сдвиге. Это решается путем ограничения напряжения сдвига на потенциальных наклонных поверхностях разрушения.

Укладка элементов кладки AAC

На уровне диафрагмы стены кладки AAC соединяются с полом или крышей с помощью залитой цементным раствором балки, аналогично конструкции из глиняной или бетонной кладки. После укладки блоков кладки из AAC плоскость стены можно выровнять с помощью шлифовальной доски, изготовленной для этой цели.

Укладка блоков кладки AAC с использованием тонкослойного раствора и зубчатого шпателя — последующие слои укладываются с использованием модифицированного полимером тонкослойного раствора, наносимого специальным зубчатым шпателем.

Электрические и сантехнические установки в AAC

Электрические и сантехнические установки в кирпичной кладке AAC размещаются в проложенных пазах. При установке желобов необходимо соблюдать осторожность, чтобы обеспечить сохранение структурной целостности элементов AAC. Не сокращайте арматурную сталь и не уменьшайте конструктивную толщину элементов AAC, кроме случаев, когда это разрешено проектировщиком.В вертикально перекрывающих элементах AAC горизонтальная прокладка разрешается только в областях с низкими напряжениями изгиба и сжатия. В горизонтальных элементах AAC следует минимизировать вертикальную маршрутизацию. Когда это возможно, может быть полезно предусмотреть специальные выемки для большого количества трубопровода или водопровода.

Внешняя отделка для AAC

Незащищенная внешняя поверхность AAC ухудшается при воздействии циклов замораживания и оттаивания в насыщенном состоянии. Чтобы предотвратить такое ухудшение состояния при замораживании-оттаивании, а также для повышения эстетических характеристик и стойкости к истиранию AAC, следует использовать внешнюю отделку.Они должны быть совместимы с лежащим в основе AAC с точки зрения теплового расширения и модуля упругости, а также должны быть паропроницаемыми.

Доступно множество различных типов внешней отделки. Модифицированные полимером штукатурки, краски или отделочные системы являются наиболее распространенной внешней отделкой для AAC. Они увеличивают сопротивление проникновению воды AAC, позволяя при этом пропускать водяной пар. Тяжелые краски на акриловой основе, содержащие заполнители, также используются для повышения стойкости к истиранию. Как правило, нет необходимости выравнивать поверхность, а горизонтальные и вертикальные швы могут быть скошены как архитектурный элемент или могут быть заполнены.

Кладочный шпон можно использовать поверх каменной кладки AAC во многом так же, как он используется для других материалов. Шпон крепится к стене из кладки AAC с помощью специальных стяжек. Пространство между AAC и кладкой можно оставить открытым (образуя дренажную стену) или заполнить раствором.

Когда панели AAC используются в контакте с влажной или насыщенной почвой (например, в стенах подвала), поверхность, контактирующая с почвой, должна быть покрыта водонепроницаемым материалом или мембраной.Внутренняя поверхность должна быть либо без покрытия, либо иметь паропроницаемую внутреннюю отделку.

Изображение любезно предоставлено Aercon Florida.

Внутренняя отделка для каменной кладки AAC

Внутренняя отделка используется для повышения эстетики и долговечности AAC. Они должны быть совместимы с лежащим в основе AAC с точки зрения теплового расширения и модуля упругости, а также должны быть паропроницаемыми.

Доступно множество различных видов внутренней отделки. Внутренние стеновые панели AAC могут иметь тонкий слой штукатурки на минеральной основе для достижения гладкой поверхности.Легкая внутренняя штукатурка на основе гипса может обеспечить более толстое покрытие для выравнивания и выпрямления стен, а также для создания основы для декоративных красок для внутренних помещений или отделки стен. Внутренние штукатурки содержат связующие вещества, улучшающие их адгезию и гибкость, и обычно наносятся путем распыления или затирки.

Гипсокартон при нанесении на внутреннюю поверхность наружных стен из AAC следует крепить с помощью полос для опалубки, подвергнутых обработке давлением. При нанесении на внутренние стены влагостойкий гипсокартон можно наносить непосредственно на поверхность AAC.

Для коммерческих применений, требующих высокой прочности и низких эксплуатационных расходов, часто используются покрытия на акриловой основе. Некоторые содержат заполнители для повышения стойкости к истиранию.

Когда керамическая настенная плитка должна быть уложена поверх AAC, подготовка поверхности обычно необходима только тогда, когда поверхность AAC требует выравнивания. В таких случаях перед укладкой керамической плитки на поверхность AAC наносится покрытие на основе портландцемента или гипса. Затем керамическую плитку следует приклеить к обшитой паркетом стене либо цементным тонким раствором, либо органическим клеем.Во влажных помещениях, таких как душевые, следует использовать только паржевое покрытие на основе портландцемента, а керамическую плитку следует укладывать только на цементный тонко застывший раствор.

Типовые детали конструкции для элементов AAC

Широкий спектр деталей конструкции для каменной кладки AAC доступен на веб-сайтах отдельных производителей, доступных через веб-сайт AACPA.


Об авторе

Ричард Клингнер, Ph.D. — профессор Л. П. Гилвина гражданского строительства в Техасском университете в Остине, где он специализируется на поведении и проектировании каменной кладки, особенно в условиях землетрясений.Он также является автором книги «Структурный дизайн каменной кладки» и бывшим председателем Объединенного комитета по стандартам каменной кладки (MSJC).

Статьи по теме

Файлы Фешино: Арки

Присоединяйтесь к MCAA сейчас всего за 799 долларов

Реставрация кладки: замена кирпича, камня и материалов

Другие заголовки о масонстве

6 мифов о строительстве из газобетона

Автоклавный газобетон — относительно новый строительный материал, с которым связано множество мифов и заблуждений.Причина тому — отсутствие у строителей опыта и наличие на рынке другого ячеистого бетона с другими характеристиками от газоблоков

.

Попробуем разобраться, какие распространенные утверждения о газобетоне не соответствуют истине и связаны с недостаточной информированностью заказчиков или несоблюдением технологии возведения коттеджей из газоблоков.

Миф 1. Газобетон вреден для здоровья, так как содержит алюминий

Алюминиевая пудра фактически является необходимым компонентом для вспенивания раствора при производстве газоблоков.Взаимодействуя с известью, алюминий приводит к выделению водорода и образованию множества заполненных газом ячеек, которые обеспечивают уникальные характеристики газоблоков. Однако в чистом виде алюминий, конечно, в составе материала сохранить нельзя. После реакции с известью она остается в блоках в виде стабильного химического соединения — оксида алюминия, который входит в состав глиняных и керамических кирпичей.

Миф 2. Газобетон — хрупкий материал, в котором есть трещины

Причина появления этого мифа банальна.Немалое количество заказчиков обратилось к недобросовестным строителям и столкнулось с повреждениями и трещинами в газоблоках при транспортировке материала или, что еще хуже, в стенах готовых домов. Но в подавляющем большинстве случаев такие проблемы связаны с несоблюдением технологии использования газобетона.

«Хрупкость» — понятие условное, не используемое в строительстве. В случае стеновых материалов имеет смысл говорить о несущей способности газоблоков и предельной прочности материала на сжатие, растяжение, изгиб и т. Д.Несущая способность наиболее популярных марок газоблоков соответствует требованиям, необходимым для строительства 2-3-х этажных домов (для каждого конкретного дома расчет потребности). В то же время в доме из газоблоков, как, скажем, коттедж из кирпича, трещины все же могут возникать из-за несоблюдения технологии строительства — неправильная кладка фундамента, отсутствие арматуры, использование не соответствующих ей марок газобетона. с расчетами и т. д. При транспортировке элементов тоже требуется внимательное отношение к рекомендациям производителей, например, использование специальных поддонов и поддонов для транспортировки материала.

Миф 3. Клей для газобетона дорогой и использовать его невыгодно

Это утверждение опровергается элементарными расчетами. Стоимость тонкослойной клеевой смеси действительно в 2-2,5 раза выше, чем цена обычного цемента. Однако для укладки элементов на цементно-песчаную смесь необходимо образование швов толщиной 10-12 мм, тогда как в случае тонкослойного состава толщина шва составляет 1-3 мм. Расход тонкослойной смеси при строительстве дома в 5-6 раз меньше цементной.

Миф 4. Газобетон быстро намокает и теряет свои характеристики

Причиной возникновения этого мифа также являются ошибки, допущенные при строительстве. Любой строительный материал в той или иной степени гигроскопичен и паропроницаем, но это не мешает нам использовать в строительстве, например, дерево. В случае с газоблоками материал действительно следует защищать от прямого воздействия воды: накрыть клеенкой на строительной площадке, чтобы защитить от дождя, и защитить от влаги с земли, сняв фундамент на высоту 40 см по горизонтали. гидроизоляция.

В остальном опасения по поводу намокания газобетона беспочвенны. Благодаря высокой паропроницаемости влага из газобетонных стен в отапливаемых помещениях быстро испаряется. Более того, по опыту Польши можно даже судить, что коттеджи из газобетона восстанавливаются после наводнения. Но если внешнюю стену покрыть отделкой с плохой паропроницаемостью, внутри стеновых блоков действительно будет скапливаться влага.

Миф 5. Газоблоки требуют обязательной изоляции

По большому счету любой дом, независимо от строительного материала, можно строить с утеплителем или без него, будет варьироваться только толщина стен — от 15 см в случае каркасных домов до нескольких метров в случае железобетонных.Поэтому возведение, скажем, кирпичного дома шириной 1,5 кирпича (38 см) требует надежного утепления с использованием 15-сантиметрового слоя теплоизоляции.

В случае пенобетона толщина стены и необходимость использования утеплителя определяется теплотехническим расчетом. В более холодных регионах Украины минимальная толщина стены из газобетона без утеплителя составляет 35 см. Но стену такой же толщины можно утеплить, применив блоки шириной 20-25 см и слой теплоизоляции 10-15 см.

Миф 6. Газобетон требует дорогой внешней отделки

Стены из газобетона, действительно, часто облицовывают лицевым кирпичом или фасадными панелями, но делают это скорее для красоты, а не для защиты от атмосферных воздействий. Пропитанная дождем или заснеженная кладка из газобетона сохнет быстро. Поэтому при желании сэкономить газоблоки можно красить или оштукатурить (материал с высокой паропроницаемостью) или даже оставить без отделки. При этом для защиты стен от влаги все же важно правильно обустроить оконные и кровельные свесы коттеджа.

Кирпичи, блоки и панели: что в стене?

Блочные стеновые системы

Теперь давайте посмотрим на системы, которые похожи на обычные «кирпичи и раствор», начиная с самых обычных.

Кирпич двойной

Как следует из названия, дома из двойного кирпича имеют внешние стены из кирпича или других каменных блоков как на внутреннем, так и на внешнем слоях (называемых листами) с воздушным зазором (часто 50 мм) между ними. Обычно не используется деревянный или металлический каркас.

Внешний слой обычно представляет собой обычный кирпич, в то время как внутренние слои могут быть кирпичными или бетонными блоками или, возможно, другими каменными блоками, в зависимости от предпочтений. Два слоя стены соединены между собой кирпичными стяжками для прочности и устойчивости.

Воздушный зазор между двумя слоями обеспечивает некоторый уровень изоляции, и дополнительную изоляцию можно добавить с помощью листов жесткого пенопласта или напыляемой пены. Высокая тепловая масса внутренней кладки помогает стабилизировать температуру в помещении.

Внутренняя кладка может быть облицована гипсокартоном или другой облицовкой по выбору, отштукатурена или даже оставлена ​​голой для интереса. Конечно, выбор футеровки будет определять, насколько эффективна тепловая масса, поскольку материалы с высокой плотностью, такие как цементная штукатурка, обеспечивают наилучшее тепловое сцепление. Более легкие материалы, такие как гипсокартон, будут вызывать эффект теплового запаздывания, вызванный отдельным листом и небольшим воздушным зазором, неизбежно создаваемым между облицовкой и кладкой.

Хотя обычно считается, что обожженные глиняные кирпичи обладают высоким содержанием энергии, некоторые производители прилагают усилия для уменьшения углеродного следа за счет снижения энергозатрат для обжиговых печей.

Автоклавный газобетон (AAC)

Как следует из названия, AAC — это пенобетон, по сути, пенобетон. AAC примерно на 80% состоит из воздуха (хотя это зависит от конкретного материала и его предполагаемого использования), и поэтому он намного легче обычного бетона. Это дает ему разумную изоляционную способность, сохраняя при этом некоторую тепловую массу.

Автоклавный газобетон доступен в различных формах, от кирпича и блоков разного размера до стеновых панелей и даже панелей пола.С ним легко работать — блоки просто цементируются специальным цементом. Поскольку блоки намного больше, чем обычные кирпичи, время строительства может быть довольно быстрым. Самый популярный бренд AAC — Hebel; действительно, под этим именем широко известен AAC.

Поскольку AAC бывает как из блоков, так и из панелей, стены можно строить несколькими способами. Если они построены из блоков, как и другие крупноблочные материалы, блоки являются несущими компонентами — рама не требуется. В качестве альтернативы, панели AAC могут использоваться в качестве облицовки над несущей рамой, обеспечивая дополнительную несущую поддержку конструкции. .

Из-за относительно высокой изоляционной способности AAC, особенно блочной формы, дополнительная изоляция обычно не требуется. Для стен, облицованных AAC, в раму может быть встроена дополнительная изоляция, как и в любом другом облицованном здании.

Изоляционные бетонные формы (ICF)

Переходя к более новым материалам, мы сталкиваемся с изоляционными бетонными формами. Это большие блоки, часто сделанные из пенополистирола, которые сложены как гигантские кирпичи Lego. После завершения стены формы заполняются бетоном, который застывает, образуя прочную изолированную стену.

Затем внешние поверхности форм обрабатываются или облицовываются (точнее, облицовываются), чтобы защитить их от повреждений при ударах, а также обеспечить защиту от огня.

Изолированные бетонные опалубочные стены могут быть хорошими тепловыми характеристиками, а также обеспечивать высокий уровень акустического затухания, поэтому они идеальны в шумной среде, например, для домов возле основных дорог, промышленных зон или железнодорожных путей.

Однако, поскольку они заполнены бетоном, они могут иметь высокую внутреннюю энергию, если не используется экологический цемент.Кроме того, полистирол не является очень экологически чистым материалом (хотя производственные процессы постепенно улучшаются, например, за счет исключения ХФУ в качестве расширителей), и, как правило, он не подвергается биологическому разложению. Это также важный компонент пластиковых отходов, обнаруженных в океанах. Кроме того, поскольку установленные ICF представляют собой композит из пенобетона, они не подлежат вторичной переработке по окончании срока службы здания.

Бетон

Timbercrete — это смесь древесных отходов (опилок), цемента и песка, из которой изготавливают кирпичи, стеновые панели и брусчатку.Изделия Timbercrete также содержат нетоксичные добавки для повышения прочности блоков и предотвращения чрезмерного проникновения воды.

Timbercrete выпускается с различными размерами блоков и панелей и отделками, такими как булыжник, гладкая и текстурированная отделка, чтобы соответствовать практически любому стилю здания. Поскольку его основной ингредиент — это переработанные древесные отходы, деревья не вырубают для производства Timbercrete. Содержание древесных отходов снижает углеродный след за счет удержания углерода, а материал устойчив к термитам.

Timbercrete имеет лучшие тепловые характеристики, чем бетон, и есть блок с высокими тепловыми характеристиками, называемый Super Insolated Block, который сочетает в себе сердцевину из пенополистирола с внутренней и внешней облицовкой Timbercrete, чтобы обеспечить как хорошую тепловую массу, так и уровень изоляции стен R4.

Strawbale

Сильно сжатые соломинки укладываются как большие кирпичи и связываются проволочными стяжками. Strawbales может либо образовывать заполнение между структурными столбами, либо может быть несущим при правильной строительной технике. Стены соломенного пузыря обработаны с обеих сторон, чтобы не допустить вредителей и защитить от непогоды.

Стены Strawbale имеют низкую тепловую массу (хотя это зависит от толщины внутренней штукатурки), но имеют очень высокий уровень теплоизоляции и могут обеспечивать очень стабильную внутреннюю температуру с минимальным нагревом и охлаждением.Суммарная энергия низка, если используются тюки местного производства, и выше, если их нужно транспортировать на большие расстояния. Они также задерживают углерод, по крайней мере, до конца срока службы здания, который может составлять более 100 лет.

Несмотря на то, что здания из соломы сделаны из соломы, они обычно достигают высокого уровня огнестойкости из-за герметичности стен — в тюках очень мало воздуха, чтобы обеспечить возможность возгорания.

Грязевой кирпич

Смесь почвы, глины и воды, а иногда и армирующего материала, такого как солома, выливают или прессуют в формы и дают ей высохнуть.Грязевые кирпичи используются как обычные кирпичи, хотя обычно они больше и тяжелее. Раствор обычно представляет собой смесь, похожую на кирпичную по составу. Небольшой процент цемента может быть добавлен в смесь кирпича и / или раствора для повышения прочности и устойчивости к атмосферным воздействиям. Готовые стены обычно герметизируются прозрачным герметиком из сырцового кирпича или могут быть оштукатурены или покрыты другим подходящим материалом.

Стены из глиняного кирпича имеют высокую тепловую массу и поэтому обеспечивают стабильную внутреннюю температуру, но уровни изоляции невысоки и варьируются в зависимости от состава кирпича.Уровни огнестойкости обычно очень высоки. Суммарная энергия низка, если используются кирпичи местного производства, и выше, если их необходимо транспортировать.

Камень

Поскольку камень представляет собой материал естественной формы, воплощенная энергия исходит от добычи / резки / отделки камня, транспортировки и раствора, используемого при возведении стен.

Также необходимо учитывать экологический ущерб, причиненный карьерными работами, хотя некоторые компании восстанавливают свои карьеры после того, как они исчерпаны.

На некоторых участках имеется обилие натурального камня прямо под поверхностью, который можно собирать, мыть и использовать как есть, без какой-либо резки. Обычно это больше подходит для владельцев-строителей, учитывая трудоемкий процесс сбора и очистки камня.

Основными преимуществами камня, помимо потенциально низкой вложенной энергии, являются высокая тепловая масса и исключительная огнестойкость. Однако, как и бетон, камень не является хорошим изолятором, поэтому обычно требуется внешняя штукатурка с толстой изоляционной штукатуркой.В качестве альтернативы, камень можно использовать только для термальных банок внутри дома, например, для декоративных стен и каминов.

Кирпич зеленой энергии

Это особая марка уникального строительного блока из пенополиизоцианурата высокой плотности (PIR), облицованного на внутренней и внешней поверхности панелью из оксида магния (MgO) толщиной 9 мм.

Кирпичи включают установочные проушины, которые обеспечивают выравнивание стен, канавку из мастики для уплотнения между кирпичами и центральные пустоты для прокладки коммуникаций, таких как трубы и кабели.

Кирпичи имеют размеры 600 мм в длину, 300 мм в высоту и 320 мм в толщину (включая облицовку) и просто складываются вместе, без использования раствора или бетонной заливки, что обеспечивает очень быстрое строительство. Существует восемь различных форм кирпича Green Energy Brick для углов, Т-образных профилей и т.п.

Облицовка из MgO является огнестойкой, а пена PIR является самозатухающей, что придает стенам Green Energy Brick (GEB) высокий рейтинг огнестойкости. Класс изоляции стандартной стены GEB — огромный R8, что обеспечивает очень хорошие тепловые характеристики.

У вас недостаточно прав для чтения этого закона в это время

У вас недостаточно прав для чтения этого закона в это время

Логотип Public.Resource.Org На логотипе изображен черно-белый рисунок улыбающегося тюленя с усами. Вокруг печати красная круглая полоса с белым шрифтом, в верхней половине которого написано «Печать одобрения», а в нижней половине — «Public.Resource.Org». На внешней стороне красной круглой марки находится круг. серебряная круглая полоса с зубчатыми краями, напоминающая печать из серебряной фольги.

Public.Resource.Org

Хилдсбург, Калифорния, 95448
США

Этот документ в настоящее время недоступен для вас!

Уважаемый гражданин:

В настоящее время вам временно отказано в доступе к этому документу.

Public Resource ведет судебный процесс за ваше право читать и говорить о законах. Для получения дополнительной информации см. Досье по рассматриваемому судебному делу:

.

Американское общество испытаний и материалов (ASTM), Национальная ассоциация противопожарной защиты (NFPA),
и Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE) v.Public.Resource.Org (общедоступный ресурс),
DCD 1: 13-cv-01215, Объединенный окружной суд округа Колумбия [1]

Ваш доступ к этому документу, который является законом Соединенных Штатов Америки, был временно отключен, пока мы боремся за
ваше право читать и говорить о законах, по которым мы решаем управлять собой как демократическим обществом.

Чтобы подать заявку на получение лицензии на ознакомление с этим законом, ознакомьтесь с Сводом федеральных нормативных актов или применимыми законами и постановлениями штата.
на имя и адрес продавца.Для получения дополнительной информации о постановлениях правительства и ваших правах как гражданина в соответствии с нормами закона ,
пожалуйста, прочтите мое свидетельство перед Конгрессом Соединенных Штатов.
Вы можете найти более подробную информацию о нашей деятельности на общедоступных ресурсах.
в нашем реестре деятельности за 2015 год. [2] [3]

Спасибо за интерес к чтению закона. Информированные граждане — это фундаментальное требование для работы нашей демократии.
Благодарим вас за усилия и приносим извинения за неудобства.

С уважением,

Карл Маламуд
Public.Resource.Org
7 ноября 2015 г.

Банкноты

[1] http://www.archive.org/download/gov.uscourts.dcd.161410/gov.uscourts.dcd.161410.docket.html

[2] https://public.resource.org/edicts/

[3] https://public.resource.org/pro.docket.2015.html

Кирпичи лучше блоков? Подробное руководство

И кирпичи, и блоки — отличные строительные материалы. Оба они обладают высокой прочностью на сжатие, огнестойкостью и обладают разной степенью изоляции.По этой причине их часто используют в сочетании. Чтобы определить, лучше ли один из них, будет зависеть исключительно от того, какой проект вы готовите и какие функции для вас наиболее важны.

Для зданий общего назначения кирпич станет отличным выбором с точки зрения огнестойкости, низких эксплуатационных расходов и общей долговечности по сравнению с блоками. Когда дело доходит до прочности, отношения к окружающей среде и стоимости, кирпичи и блоки вполне сопоставимы.

Давайте рассмотрим различные характеристики и положение кирпича и блоков в каждом сравнении.Это не всегда черно-белое сравнение, и не один тип материала всегда выигрывает в категории при любых обстоятельствах.

Композиция

Начнем с композиции. В чем основное отличие кирпича от блока?

Красный или глиняный кирпич — традиционный строительный материал, изготовленный из природных ресурсов. Кирпичи обычно представляют собой смесь песка, извести и бетонных материалов. Также присутствуют следы бария (Ba), марганца (Mn) и других компонентов, которые добавляются при объединении минералов во время создания глины.

Различные элементы могут помочь с различными типами и цветами кирпича, но карбонат бария является дополнительным компонентом, повышающим устойчивость кирпича к естественным элементам и атакам на кирпич.

Какие блоки? Бетонные блоки?

Чтобы уточнить, что такое блоки, важно отметить, что есть несколько стилей блоков, которые подпадают под эту категорию.

Как правило, все бетонные блоки изготавливаются из цемента, воды и заполнителей. Заполнители могут быть отшлифованы или альтернативны.Во время комбинации происходит химическая реакция, которая обеспечивает прочные связи между элементами, которые обеспечивают высокую прочность.

В строительстве используются разные типы бетонных блоков. Вот краткий список для обзора различных типов блоков, с которыми вы столкнетесь при поиске строительного материала. Обратите внимание, что все они относятся к одной категории: «бетонный блок»

  • Бетонные подрамники, угловые и опорные блоки
  • Бетонные блоки для откосов
  • Бетонные блоки для перегородок
  • Перемычки
  • Блок с зубчатой ​​головкой

(источник: Конструктор)

Кроме того, когда вы встретите бетонные блоки, вы увидите, как они помечены разными способами.Кладка из бетонных блоков (CMU) обычно бывает 2-, 4-, 6-, 8-, 10- и 12-элементной конфигурации, которая просто определяет единицы в «дюймах»,

Существуют два типа бетонных блоков и кирпичей. И блоки, и кирпичи имеют полые полости, которые могут быть благоприятными в некоторых условиях, например, воздух может обеспечивать изоляцию, сохраняя при этом легкость блоков.

Ниже перечислены основные различия между сплошными и полыми элементами. Если не указано иное, характеристики относятся как к кирпичным, так и блочным блокам в сплошной или полой форме.

Полнотелые формы

  • Полнобетонные блоки имеют большой вес и изготавливаются из плотных заполнителей.
  • Обычно прочный и стабильный
  • Отлично подходит для больших работ, требующих несущих стен

Пустотные формы

  • Пустоты могут варьироваться, но обычно они превышают 25%
  • Сплошные области более 50%
  • Обычно изготавливается из легких заполнителей для бетонных блоков
  • Простая установка и легкий вес по сравнению с твердыми формами
  • Чтобы блоки или кирпичи не укладывались друг на друга, они удерживаются вместе с помощью бетонного раствора
  • Легкие и довольно экономичные

В целом также пустотелый цемент обеспечивает дополнительные льготы в своих естественных характеристиках.В дополнение к низким эксплуатационным расходам и огнестойкости (которые будут обсуждаться далее в следующих нескольких разделах) полый блок обеспечивает изоляцию, которая помогает удерживать горячий или холодный воздух вне дома / помещения.

Прочность?

Для несущих стен используются как бетонные блоки, так и глиняные кирпичи, поэтому прочность является важным фактором при выборе материала. Это включает напряжение сдвига, напряжение изгиба и прочность на сжатие.

Все строительные материалы соответствуют стандарту ASTM C90.Например, согласно ASTM C 90-91 — прочность на сжатие определяется как минимальное значение, а общая площадь пустот и лицевой поверхности (минимум) в блочном блоке регулируется.

Важно отметить, что все оценки прочности важны для определения полной прочности и функциональности блока, чем обычно упоминаемая прочность на сжатие.

Хотя это может показаться излишним при рассмотрении строительного материала в местах с сильными движениями грунта, сильными наводнениями и сильным ветром, важно учитывать все сильные стороны, такие как изгиб на сжатие и изгиб, а также прочность кладки на сдвиг.

Что наиболее важно, многие исследования в области науки и техники для строительных материалов рассматривают эти элементы как ключевые факторы в понимании правильного материала.

Следующие значения прочности основаны на исследовании, которое было специально сосредоточено на изучении воздействия пустотелого цемента и влияния на водопоглощение, прочность на сжатие, прочность на сжатие, сдвиг и изгиб при растяжении, которое может иметь размер пустот.

Для ознакомления с условиями исследования определено следующее.Пустоты — это пустоты в блоке. Общая площадь — это общая длина (L) x ширина (W) цементного блока, в то время как чистая площадь составляла L x W остальных областей после вычитания пустот из общей площади.

Прочность на сжатие

В этом конкретном исследовании автор измерил механические характеристики различных блоков с различными пустотами. Согласно ASTM C90, бетонные блоки и кирпичи должны иметь давление не менее 1900 фунтов на квадратный дюйм.

В целом, среди различных типов блоков, средний бетонный блок может выдерживать примерно 3500 фунтов на квадратный дюйм.Что касается среднего глиняного (красного) кирпича, эти блоки могут выдерживать до 3000 фунтов на квадратный дюйм.

В данном исследовании использовался полнотелый кирпич, общая прочность которого составляла примерно 2,15 МПа. Это базовая линия, используемая для сравнения прочности блоков, а также изменений прочности этого цементного блока при увеличении пустот.

  1. При увеличении пустот (наблюдается от 0 до 44%) общая общая прочность значительно снижается. (4,96–1,00 МПа в эталонном эксперименте).
  2. Общая прочность кирпича 2,15 МПа была сопоставима с цементным блоком с примерно 24% пустот. Это означает, что цементные блоки с пустотами 0-16% показали лучшую общую прочность по сравнению с кирпичом, в то время как цементные блоки с пустотами более 24% показали худшие характеристики, чем полнотелый кирпич.

Победа блоков

Важным выводом в этом эксперименте было то, что цементный блок с пустотами 0 по сравнению с кирпичом имел значительно более высокую прочность на сжатие при 4.96 МПа против 2,15 соответственно. Цементный блок превосходил кирпич, пока не осталось пустот около 24%.

Прочность кладки на сдвиг и прочность на изгиб

Прочность на сдвиг

Хотя в эксперименте, на который мы ссылаемся, нет прямой зависимости между блоком и кирпичом в отношении прочности на сдвиг и прочности на изгиб, я подумал, что важно посетить эти два переменные.

Для эталонного эксперимента прочность на сдвиг рассчитывалась по следующей формуле:

Прочность на сдвиг = P + W2A

, где P была предельной нагрузкой, при которой нагрузка была приложена под контролем смещения.

W — вес цементного блока, а A — площадь поверхности разрушения.

Для общей прочности коэффициент пустотности, который увеличился от полнотелого кирпича до 40%, был обратно пропорционален прочности на сдвиг и уменьшился примерно на 40%.

Хотя это не прямое сравнение, было проведено альтернативное исследование для изучения напряжения сдвига в кирпиче и кирпичной кладке.

В этом исследовании напряжение сдвига было получено путем зажатия кирпича между двумя стальными пластинами на испытательном стенде.Сила сдвига применялась к четверти кирпича, консольно закрепленного из стали. Для сравнения, описанный выше эксперимент был применен к нулевой осевой нагрузке предварительного сжатия, которая была приложена под контролем смещения.

Несмотря на то, что были изучены различные кирпичи, напряжение сдвига в одиночном кирпиче, испытание на одиночный сдвиг в среднем варьировалось от 1,06 Н / мм 2 (1,06 МПа) до 6,33 Н / мм 2 (6,33 МПа).

(Источник: прочность на сдвиг кирпичей и кирпичной кладки)

Прочность на изгиб

Что касается прочности на изгиб, то при увеличении отношения площади пустот с 0 до 16% предел прочности при изгибе при растяжении снижается на 36%.Для 16% и выше (44%) прочность на изгиб еще больше снизилась, но с меньшей скоростью, но еще на 24%.

Огнестойкость

Бетонная кладка известна своими негорючими свойствами. Для этой характеристики исследователи наблюдали часы огнестойкости по сравнению с процентным содержанием пустот.

Толщина кладки, рассчитанная путем деления полезного объема блока на произведение длины и высоты кладки, сравнивалась с общей огнестойкостью в час.Из простых расчетов количество часов огнестойкости уменьшалось по мере уменьшения толщины.

По мере уменьшения толщины с контрольной, 115 мм до 65 мм, время огнестойкости уменьшилось с 3,0 до 1,0 часа соответственно.

В отличие от газоблоков, кирпичи, как правило, обладают огнестойкостью и более восприимчивы к горению из-за его характеристик сжатия. Хотя аэрация будет зависеть от типа блока, на который вы смотрите, по сравнению со сжатым земляным материалом, который предлагают кирпичи, он не обладает огнестойкостью.

Чрезвычайно компактный и сжимаемый элемент оставляет мало места для сгорания или воспламенения внутри кирпича. Кирпич имеет самый высокий рейтинг огнестойкости и может выдерживать пожар лучше, чем блоки или другие строительные материалы.

С результатами можно ознакомиться здесь: Влияние пустот на механические характеристики пустотелой цементной кладки.

Долговечность

Выигрыш для кирпичей

Кирпичи обычно очень долговечны и не требуют особого ухода. Когда здание или сооружение построено правильно, с хорошими навыками и в сочетании с прочным строительным материалом, они будут оставаться прочными и жесткими в течение многих лет без особого обслуживания.

Техническое обслуживание

Выигрыш для кирпичей.

Как будет упомянуто ранее и в следующем разделе «Воздействие на окружающую среду», кирпич — отличный строительный материал, который не требует особого ухода, фактически, они почти не требуют ухода. После того, как конструкции построены из кирпича, они не требуют регулярного ухода.

Что касается блоков, они обычно нуждаются в некоторой TLC через несколько лет, чтобы предотвратить разрушение.

Значение изоляции

В строительстве значение R является важным показателем сопротивления тепловому потоку строительного материала (или изоляции).Значение R выражает разницу температур, которая влияет на одну единицу площади.

R = ℉ * ft2 * hrBTU

R-Value
Кирпич (4 дюйма) 0,80
Бетонный блок (4 дюйма) 0,80
Бетон блок (8 дюймов) 1,9-2,5

R-значение из этого списка R-значений строительных материалов

Кроме того, это сравнение значений изоляции для различных блоков в единицах Вт / мК .

Тип блока Значение R
Блок из сотовой глины 0,10 Вт / м · К
Блок из конопли 0,11 Вт / м · К
Необожженный глиняный блок 0,21-0,95 Вт / мК
Изолированный бетонный опалубочный блок 0,083 Вт / мК

Источник: Блоки и их альтернативы.

Обычные кирпичные стены имеют R-значение 0,2 на квадратный дюйм, тогда как 8-дюймовые бетонные блоки имеют R-значение 0.08 на квадратный дюйм, что дает значение R 2,5 для всего блока.

Имейте в виду, что значения изоляции являются аддитивными. Если вы также добавите изоляцию к своим стенам, например, к бетонным блокам, значение R может увеличиться до 1,2 на квадратный дюйм (в данном примере).

Тем не менее, важно отметить, что не только значение изоляции определяет, является ли это оптимальным выбором для удержания горячего воздуха внутри или снаружи. Фактически, значение изоляции также может быть обманчивым для звукоизоляции.

Рассмотрите ситуации, представленные ниже, и посмотрите, какой вариант лучше всего подходит для вашего проекта. Вас беспокоит жара? Вы находитесь в оживленном центре города?

Победа кирпичей

Вы находитесь в зоне горячих десертов? Вам нужно постоянно держать тепло вне помещения?

Значительная «победа» для кирпичиков в этом вопросе. Кирпичи способны поглощать тепловую энергию солнца в течение дня, одновременно изолируя дом. Их давно любили за это свойство.Он полезен для жарких зон и, наоборот, отлично подходит для холодных ночей.

Эта характеристика называется (высокой) тепловой массой. Поскольку кирпичные блоки способны поглощать больше тепла в течение дня по сравнению с блоками, они могут поддерживать тепло в доме более прохладными вечерами и прохладу в жаркий летний полдень.

Это тепло накапливается, а затем выделяется в вечернее время, что делает его отличным средством для зданий и домашних конструкций в зонах с высокой температурой.

Победа за блоки

Если вы имеете дело с оживленным городом, вы можете выбрать вместо него кварталы.Для звукоизоляции блоки — отличный способ звукоизоляции вашей конструкции. Для районов с интенсивным движением и шумовым загрязнением блочные стены могут предложить гораздо более высокую звукоизоляцию благодаря своим цементным компонентам.

Они имеют более высокую плотность в целом, предлагают более высокую звукоизоляцию, что является отличной чертой для домов рядом с железной дорогой, аэропортом или оживленными дорогами.

Кроме того, воздухововлекающий бетонный блок может иметь коэффициент сопротивления R до 3,9 благодаря пузырькам воздуха, обеспечивающим изоляцию.

Стоимость

Стоимость может быть сопоставимой на единицу, но важно учитывать, как стоимость складывается с тем, как она продается, и с затратами на рабочую силу.

Например, кирпичи продаются тысячами, а строительный раствор — коробками. Труд кладки обычно оплачивается тысячами. Основные различия делятся на размер, который будет учитывать большинство архитекторов и строителей, а именно квадратные метры.

В большинстве случаев кирпичи меньше обычного размера блока.Будь то сравнение кирпичей разных размеров (кирпич королевского размера и кирпичи модульного размера) или сравнение кирпичной установки и блочной установки, установка более крупных блоков в целом более рентабельна.

Большинство установок, как правило, дешевле, будь то кирпич или цементный блок.

Выигрыш для блоков

Известно, что из-за общей формы и размера блоков они стоят меньше, чем кирпичи, когда речь идет о квадратных метрах.Помимо меньшей стоимости материала, их еще и легко изготовить.

Дешевое и выполнимое производство предлагает дополнительный вариант снижения затрат. Некоторые строители используют эту возможность, производя блоки на месте строительства. Это экономит расходы на транспортировку, структурную целостность, а также избавляет от хлопот.

Поскольку многие строители и архитекторы становятся более «экологичными», они сталкиваются со сложными условиями строительства, особенно когда речь идет об импорте и общей транспортировке материалов.Это альтернатива, которую используют некоторые строители для решения некоторых проблем.

Воздействие на окружающую среду

Как правило, красный кирпич считается вредным для окружающей среды. Основная причина в том, что красные кирпичи запрещено раскапывать без предварительной очистки окружающей среды с тех пор, как Национальный зеленый трибунал принял меры.

Национальный экологический трибунал предпринял меры по уважительной причине. Как упоминалось в разделе о составе, глиняные кирпичи производятся из природных ресурсов, которые образуют глину из элементов почвы и добавок.В общем, красные кирпичи делают из защитного верхнего слоя почвы. Процесс производства кирпича заключается в изъятии природных ресурсов и истощении полезных ископаемых в природе.

Кроме того, после этой реализации цементные блоки были оценены как альтернатива для защиты окружающей среды. Производство цементных блоков не требует затрат ресурсов и высоко ценится за сокращение нашего воздействия на природные ресурсы.

Но не все кирпичи (красные) вредны и украдены из окружающей среды.Производство кирпичей из летучей золы или блоков AAC вскоре последовало за простой установкой обоих заводов без ущерба для окружающей среды.

Что касается цементных блоков, прежде чем вы решите, что они являются наиболее экологически чистым материалом, вы можете пересмотреть свое мнение. Как и все другие характеристики, кирпичи и блоки имеют свои преимущества в воздействии на окружающую среду.

Победа кирпича

По мнению некоторых строителей, кирпич считается экологически чистым строительным материалом.

Одной из основных причин в поддержку этого аргумента является возможность вторичной переработки кирпича. Красные кирпичи на самом деле сделаны из земных материалов, которые можно переработать. Это означает, что они могут быть переработаны обратно на Землю для естественных свалок. Хотя блоки, как правило, более экологичны в производстве, они не так пригодны для вторичной переработки, как кирпичи.

Несмотря на то, что вы можете не думать о дне начала строительства вашего нового проекта, поскольку вы готовитесь к строительству нового здания, это также может повлиять на ваши будущие ремонтные работы.Бетонные блоки, которые сносятся во время сноса, просто добавляют к отходам и не могут быть использованы повторно.

Здания, построенные из блоков, при разрушении приведут к образованию кучи мусора, что не помогает к кучам мусора, с которыми мы уже боремся. По сравнению со зданиями и сооружениями, построенными из кирпича, блоки имеют тенденцию оказывать негативное воздействие на окружающую среду в будущем.

Выигрыш блоков

Как упоминалось ранее, блоки — отличный выбор, который следует учитывать при размышлениях о процессе, в котором создаются блоки и кирпичи.В общем, блоки не отнимают у нашей Матери-Земли, а значит, не вредят и не истощают природу.

На самом деле блоки делаются из отходов. Хотя сами они не могут быть переработаны, они могут быть изготовлены из переработанного материала. Когда блоки изготавливаются из летучей золы, они являются всего лишь конечным продуктом остатков, оставшихся от электростанций.

Учитывая нашу заботу об окружающей среде, мы надеемся, что этот подход к производству строительных материалов будет в дальнейшем расширен до строительства с использованием «зеленых» материалов.

Другие функции

Это функции, которые не являются ключевыми элементами для сравнения кирпичных и цементных блоков, но все же функции, которые вы, возможно, захотите рассмотреть в своем проекте.

Расширение

Поскольку кирпичи имеют тенденцию расширяться со временем в течение первых нескольких лет своего срока службы, при использовании кирпича важно учитывать компенсационные швы. Это означает тщательное соблюдение структурной целостности и гибкости в целом.

Блоки, с другой стороны, обычно используются в качестве перегородок во внешних и внутренних помещениях.

Лакокрасочное покрытие

Если вы планируете нанести слой краски на поверхность, будь то ремонт сейчас или в будущем, вы можете снова рассмотреть два материала.

Нанесение краски на поверхность для двух материалов может быть различным. Для бетонных материалов состав легко впитывает краску, в то время как кирпичи склонны вызывать отслаивание краски.

Это связано с тем, что элементы выходят из кирпича после его изготовления.

Вес

Блоки легче кирпичей. Это обеспечивает удобство использования, гибкость и долговечность. Это обеспечивает соотношение плотности в сухом состоянии, которое является предпочтительным для современного строительства.

Имейте в виду, они относятся к общему размеру цементного блока или кирпича. Что касается цементных блоков, которые имеют много воздухововлекающих материалов, они могут быть намного легче. 8-дюймовый бетон может весить до 43 фунтов, а глиняный кирпич — около 5 фунтов.

Если вы предпочитаете легкий вес бетонного блока, вы можете взглянуть на газобетон в автоклаве. Они специально предназначены для облегчения деталей за счет подмешивания большего количества воздуха в устройство. Они могут весить до 80% меньше традиционных блоков.

Конечно, за это приходится платить, и это буквальная цена. Некоторые газоблоки могут быть вдвое дороже традиционных цементных блоков.

Пространство / Размер

Применение блоков обычно имеет «более тонкие» стены здания, что помогает экономить место.Если вы столкнулись с проблемой небольшого участка на большом пространстве, несколько дюймов, которые вы можете получить с помощью блока, могут иметь большое значение.

Блоки доступны в больших размерах, чем большинство кирпичей, поэтому они являются более быстрой альтернативой в строительстве.

Климат и стихийные бедствия

Как правило, бетонные блоки известны как отличный строительный материал в районах, подверженных землетрясениям. Из-за высокой стойкости к стихийным бедствиям они рекомендуются многими странами, которые часто или на высоком уровне страдают от стихийных бедствий.

(Источник: Turn bull masonry)

Пример дома

Теперь давайте рассмотрим пример сравнения кирпича и блока при строительстве дома. Это обзор, который вы могли бы рассмотреть, например, если строите дом, но он все равно будет зависеть от вашего проекта и должен рассматриваться только как общее руководство.

Кирпич Блок
Отлично подходит для домов в жарких регионах, где требуется тепло, поглощаемое кирпичом. Отлично подходит для районов, подверженных ураганам и землетрясениям (стихийным бедствиям).
Пригоден для вторичного использования Отлично подходит для звукоизоляции в оживленных и шумных городах.
Высокая огнестойкость Дешевле в сборке
Высокая долговечность Изготовлен из переработанных материалов
Низкие эксплуатационные расходы Экономичный

Источник на основе бетона по сравнению с блоком

Обзор кирпича и блока

Вообще говоря, оптимальным цементным блоком или кирпичом будет пустотелый блок без ущерба для каких-либо механических характеристик обычного блока, обладающего высокой прочностью на сжатие.

Наилучший вариант обеспечит потенциальную экономию энергии, сокращение использования сырья и материалов, пригодных для вторичной переработки. Тем не менее, обе строительные единицы борются за эти функции, и в зависимости от вашего проекта и предпочтений ваш выбор будет меняться. Следовательно, нельзя сказать, что ни одна строительная единица лучше другой.

Если вы здесь, чтобы решить, какой материал использовать, это отличный способ начать с изучения каждой характеристики и рассмотрения того, что для вас более важно в каждом разделе, а затем определения того, какую строительную единицу вы выберете в конце.Конечно, у вас также есть возможность использовать их в комбинации, чтобы воспользоваться их соответствующими сильными сторонами.

Глобальные инновационные строительные системы »Автоклавный газобетон (строительные блоки AAC)

Успех и накопленный опыт в системах передовых технологий строительства привели к назначению Everite Building Products лицензиатом автоклавного газобетона Hebel группой Xella. Everite Building Products — единственный производитель AAC в Африке.Global Innovative Building Systems гордится тем, что является одним из дистрибьюторов строительной продукции Everite.

Строительный материал

AAC завоевал значительную долю международного строительного рынка с момента его создания в 1920-х годах в Швеции. Сегодня он сохраняет репутацию строительного материала будущего. Он рассматривается как революционный материал, предлагающий уникальную комбинацию:

  • Прочность
  • Легкий
  • Теплоизоляция
  • Звукопоглощение
  • Непревзойденная огнестойкость
  • В 3 раза быстрее, чем обычный кирпич и строительный раствор
  • 1 четверть веса обычного бетона

Автоклавный газобетон (AAC) изготовлен из песка, извести, цемента, воды и алюминиевого порошка, который действует как пенообразователь и формирует однородную ячеистую структуру, известную как гидрат силиката кальция.

3 различных размера блоков AAC:

Наша линейка AAC производится в блочном исполнении. Он имеет плотность 600 кг / м3 и очень легкий. Размеры блоков эквивалентны 9 обычным кирпичам (600×250 мм). Толщина внутренней стенки 110 мм при массе 10,5 кг / блок. Толщина внешней стенки составляет 150 мм, а масса всего 15,2 кг / блок.

Панели имеют ширину 600 мм. Их толщина составляет 100 или 150 мм. Длина указывается с шагом 300 мм в диапазоне от 2,4 м до 2,7 м или 3,0 м.Эти панели составляют четверть веса обычных бетонных панелей.

Грузоподъемность:

Будучи каменным продуктом, блоки AAC обладают такими качествами, как твердость, прочность и надежность — и все это обычно только для традиционных кирпичей. Обладает прочностью на сжатие 5 МПа и рассчитан на строительство до 4 этажей.

Высокая скорость строительства:

Использование блоков AAC строить быстрее и требует значительно меньше труда по сравнению с традиционными методами строительства каменной кладки, что приводит к значительной экономии и сокращению затрат на месте в зависимости от требуемой отделки.

  • Строительство из блоков также означает более чистую и безопасную рабочую зону во время строительства и меньшую уборку после завершения строительства.
  • Быстрая установка и простота обработки с помощью простых инструментов приводят к снижению затрат на строительство.
  • Можно легко разрезать и придать ему форму дерева с помощью простых ручных инструментов.
  • Погоня за водопроводными или электрическими кабелями может выполняться вручную или с помощью фрезы по дереву.
  • Гладкая отделка может существенно избавить от штукатурки.

Превосходная огнестойкость:

  • Негорючий и славится своей высокой огнестойкостью.
  • Например, стена из AAC толщиной 150 мм выдерживает прямое воздействие огня до 6 часов.
  • Стена AAC стандартной толщины 110 мм может выдерживать температуру 4 часа.

Теплоизоляция зимой и летом:

Улучшенные изоляционные характеристики в 5 раз выше, чем у кирпича той же толщины.Тепловой КПД снижает потребность в нагревательных и охлаждающих приборах и обеспечивает снижение затрат на отопление и охлаждение до 60%.

Транспорт:

  • AAC продвигается дальше — больше квадратных метров стен на одну нагрузку.
  • Легкие и размерные характеристики блоков AAC позволяют снизить транспортные расходы по сравнению с обычным кирпичом

Технические характеристики:

Thermal: Позволяет сохранять прохладу летом и тепло зимой

стена 150 мм = U — значение 0.85 Вт / м²K

= R — значение 1,17

Звук:

  • стенка 100 мм Rw = 40 дБ
  • стена 150 мм Rw = 46 дБ

Экономичный строительный материал:

  • Экономия до 15% затрат на конструкцию за счет низкого отношения массы к прочности AAC
  • Уменьшенный вес стен:
    • Типичная нагрузка на стены из кирпича и раствора составляет прибл. 350 кг / м²
    • Нагрузка на стену блока AAC составляет прибл.90 кг / м²
  • Повышенная экономия труда и времени
  • Улучшенное снижение транспортных расходов
  • Более эффективное сокращение отходов
  • Штукатурка улучшенная

Сертификация:

Блоки: SANS 50771-4: 2014 / EN 771-4: 2011

Технические условия для каменных блоков — Часть 4: Каменные блоки из автоклавного газобетона. Определяет характеристики и требования к производительности каменных блоков из автоклавного ячеистого бетона (AAC), которые в основном предназначены для использования в качестве несущих и ненесущих конструкций для всех видов стен.

Подтверждение соглашения: 2016/509

Рациональный дизайн по запросу

обожженных глиняных кирпичей по сравнению с блоками из автоклавного газобетона — IJERT

Radhika Shukla Architecture dept. MIET Nagpur University, Mumbai, India

Abstract Инженеры и архитекторы могут выбирать материалы и продукты, которые они используют для разработки проектов. Выбор материала зависит от нескольких факторов, включая первоначальную стоимость, стоимость жизненного цикла и производительность для конкретного приложения. Из-за растущего интереса к устойчивому развитию инженеры и архитекторы более чем когда-либо мотивированы выбирать материалы, которые являются более экологичными.Однако на какой основе измерения могут инженеры и архитекторы сравнивать материалы и выбирать тот, который является более экологичным, или определять материал таким образом, чтобы минимизировать воздействие на окружающую среду? Зеленое здание нуждается в специальных материалах и системах для адаптации к устойчивости по сравнению с обычным зданием. Этот документ представляет собой попытку сравнить два основных строительных материала и предоставить всесторонний анализ, который поможет инженерам и архитекторам определиться с выбором материалов.

Ключевые словаСтроительные материалы; зеленое здание; устойчивость; Сравнительный анализ; зеленые продукты

  • ВВЕДЕНИЕ

    Кладка из кирпича была основной техникой, используемой в строительных конструкциях на протяжении как минимум семи тысячелетий [1], что делает ее одной из старейших широко используемых строительных технологий.Его наследие в существующей архитектуре по-прежнему делает его желанным архитектурным выбором во многих местах. Хотя кирпичи производятся в различных типах, материалах и размерах, которые различаются в зависимости от региона и периода времени, и производятся в больших количествах, существуют две основные категории кирпича: обожженные и необожженные кирпичи, но образ, который у индейцев обычно ассоциируется с слово

    Кирпич

    — это обожженный глиняный кирпич, который является одним из самых долговечных и прочных строительных материалов (иногда его называют искусственным камнем) и используется примерно с 5000 г. до н.э. [2].Такая долговечность обусловлена ​​полезными эксплуатационными характеристиками, широкой доступностью глины и фундаментальной простотой производства кирпича. Сушеные на воздухе кирпичи имеют более древнюю историю, чем обожженные кирпичи, известны под синонимами сырцового кирпича и самана и имеют дополнительный компонент механического связующего, такого как солома.

    В последнее время глиняный кирпич стал жертвой пожара другого типа из-за воздействия на окружающую среду. Хотя обожженный глиняный кирпич обладает определенными неотъемлемыми устойчивыми свойствами (например,грамм. долговечность, высокая тепловая масса и, часто, местная добыча и производство [3]), процесс обжига, лежащий в основе его производства, вызвал некоторые проблемы устойчивости из-за потребления энергии и выбросов парниковых газов (ПГ).

    Зеленое здание требует специальных материалов и систем для адаптации к устойчивости по сравнению с обычным зданием. Из-за растущего интереса к устойчивому развитию инженеры и архитекторы более чем когда-либо мотивированы выбирать материалы, которые являются более экологичными.В современном мире необходимо делать упор на устойчивое развитие, которое означает удовлетворение потребностей нынешнего поколения без игнорирования потребностей и чаяний будущих поколений. В соответствии с растущей тенденцией развития зеленого строительства в Индии также развивается индустрия экологически чистых материалов и услуг.

    Таким образом, сейчас предпочтение отдается более экологичным и эффективным строительным материалам, и автоклавный газобетон является одним из таких экологически чистых материалов. Он не только использует отходы, такие как летучая зола, но также обеспечивает достаточную прочность конструкций.AAC был разработан в 1924 году шведским архитектором, который искал альтернативный строительный материал со свойствами, аналогичными свойствам дерева, хорошей теплоизоляцией, прочной структурой и простым в обращении, но без таких недостатков, как горючесть, гниение и повреждение термитами [4] .

    Здесь я приложил усилия, чтобы сравнить два наиболее важных и часто используемых строительных материала в строительстве, в основном для возведения стен, то есть блоки AAC и кирпичи из жженой глины, чтобы сделать вывод, какой из двух материалов является наиболее предпочтительным.Ниже (Таблица №1) представлен сравнительный анализ, основанный на различных качественных и количественных параметрах кирпичей из обожженной глины и блоков из автоклавного газобетона. Он также сравнивает оба материала по параметрам, необходимым для того, чтобы продукт был назван экологически чистым. (Рис.1)

  • СРАВНИТЕЛЬНЫЙ АНАЛИЗ

    1. Возобновляемые ресурсы

      Одним из основных атрибутов экологичных строительных материалов является то, что они должны использовать возобновляемые ресурсы.Возобновляемые ресурсы — это те, которые могут быть восстановлены и восполнены после использования в течение короткого периода времени, такие как ветер, гидроэнергия и т. Д., А невозобновляемые ресурсы — это те, которые после использования не могут быть восстановлены. Возобновляемый ресурс должен иметь возможность устойчивого воспроизводства со скоростью, равной или большей, чем он потребляется или уничтожается. Тот факт, что определенный ресурс может естественным образом накапливаться с течением времени, не означает, что он является возобновляемым. Если он истощается быстрее, чем может

      пополнить, то не подлежит возобновлению.В конечном итоге он исчезнет без вмешательства. Следовательно, верхний слой почвы, израсходованный для изготовления кирпича, является невозобновляемым ресурсом. Эту драгоценную почву, используемую для производства кирпича, можно было бы лучше использовать в сельском хозяйстве и, таким образом, обеспечить продовольственную безопасность растущему населению. (Таблица 1: пункты 1 и 13)

    2. Использование отходов

    Зола-унос обычно является побочным продуктом тепловых электростанций и важным сырьем при производстве блоков AAC.Экологически чистые продукты также должны снижать загрязнение воздуха, земли и воды. Печи для обжига кирпича вызывают загрязнение воздуха, которое влияет не только на людей, но также на растительность и сельское хозяйство. Большое количество углекислого газа и других вредных газов создает угрозу глобального потепления и изменения климата. Блоки AAC имеют экологически чистый производственный процесс, единственным побочным продуктом является пар. (Таблица 1: пункты .1 и 8)

    C. Воплощенная энергия

    Это важный аспект, который необходимо учитывать при разработке любой устойчивой

    Рисунок 1: Свойства устойчивого материала [5]

    материал.Воплощенная энергия — это общая энергия, необходимая для добычи, обработки, производства и доставки строительных материалов на строительную площадку. При потреблении энергии образуется CO2, который способствует выбросам парниковых газов, поэтому воплощенная энергия рассматривается как индикатор общего воздействия строительных материалов и систем на окружающую среду [6]. В отличие от оценки жизненного цикла, которая оценивает все воздействия на протяжении всего срока службы материала или элемента, воплощенная энергия учитывает только внешний аспект воздействия строительного материала.Это не включает эксплуатацию или утилизацию материалов. Блоки AAC потребляют прибл. На 70% меньше энергии, чем у глиняных кирпичей [7]. (Таблица 1: пункт 12)

    1. Энергоэффективность и водосбережение

      Это также важные характеристики устойчивых продуктов. Блок AAC с очень низкой теплопроводностью сохраняет прохладу внутри летом и тепло зимой и лучше всего подходит как для внутреннего, так и для внешнего строительства, следовательно, он снижает нагрузку на систему HVAC, в конечном итоге экономя электроэнергию.Кирпичи потребляют больше воды, чем блоки AAC, их необходимо замочить в воде перед укладкой и требуется отверждение водой после помещения в строительный раствор. Блоки AAC не нуждаются в лечении. (Таблица 1: Пункты 7, 11, 16, 17 и 18, 23, 26, 27, 28, 29, 30, 31)

    2. Прочность и срок службы

      Блоки

      AAC превосходят кирпичи по параметрам прочности и срока службы; Блоки AAC снижают эксплуатационные расходы на 30-40% [8]. Снижает общие затраты на строительство на 2,5% по сравнению с кирпичом из обожженной глины, так как требует меньшего количества стыков

      и снижает потребность в цементе и стали.Бетонный кирпич относительно хорошо воспринимает краску, практически не выцветает. Глиняные кирпичи в раннем возрасте часто выделяют металлические соли, которые вызывают отслаивание краски. (Таблица 1: точки 2, 3, 4, 5, 6, 9, 10, 15, 16, 17,

      18, 22, 25 и 28)

      Влага из внешних и внутренних источников может вызвать повреждение зданий; поэтому защита от влаги является первоочередной задачей. К внешним источникам влаги относятся дождь и вода из почвы. Внутренняя влага, обычно в виде влажности, может вызвать конденсацию на поверхности стен, а также конденсацию внутри самой стены.AAC имеет очень пористую структуру, которая характеризуется «микропорами». Микропоры представляют собой маленькие пузырьки воздуха, равномерно распределенные по всему материалу, эти пузырьки воздуха препятствуют проникновению молекул воды. Следовательно, абсорбция воды материалом AAC минимальна. Все это приводит к снижению затрат на обслуживание блоков AAC и повышению их долговечности.

    3. Переработка / повторное использование

      Это и другие характеристики экологически чистых продуктов. В процессе производства блоков AAC отходы процесса резки перерабатываются вместе с сырьем и снова используются.Во время строительства практически не образуется отходов. Блоки AAC могут быть переработаны / повторно использованы для подготовки основания дорог, стяжек полов и других материалов на основе песка и цемента [9]. Обожженные кирпичи также можно повторно использовать в качестве заполнителей земли, для изготовления заполнителей для дорожного основания, ландшафтного дизайна и т. Д. (Таблица 1: пункт 8)

    4. Местная доступность

    Экологически чистые материалы должны быть доступны на месте; Азиатско-Тихоокеанский регион является самым быстрорастущим региональным рынком строительных материалов за анализируемый период 2007-2015 гг. [10].Это связано с массовым оттоком производственных и производственных баз в недорогие азиатские страны. Непрерывная и быстрая индустриализация в таких крупных регионах, как Китай и Индия, также является движущим фактором. Повышение уровня доходов, рост покупательной способности, повышение уровня жизни и т. Д. Приводят к увеличению спроса на жилые и коммерческие постройки. В настоящее время в Индии насчитывается около 35 заводов по производству блоков AAC, большая часть которых находится недалеко от Сурата, Гуджарат. По всей Индии создается все больше и больше заводов по производству блоков AAC, так как осведомленность о блоках AAC растет.(Таблица 1: пункт 14)

    Локальная доступность кирпичей больше, чем у блоков AAC. Тем не менее, глиняные кирпичи производятся в процессе, который начинается с подходящей смеси глин, которую необходимо добыть, выдержать, затем измельчить / смешать до однородной консистенции. Затем глина выдавливается через специальный пресс и нарезается по размеру. Эти необожженные кирпичи сушат перед тем, как поместить в печь, нагретую до температуры от 7000 до 11000 градусов. После этого по окончании обжига кирпичи необходимо охладить и классифицировать по цвету и прочности.Процесс очень энергоемкий, генерирует большое количество углекислого газа, его довольно сложно контролировать и он занимает до 3 месяцев. Если это еще не все, стоимость установки разумного завода примерно в 10 раз больше, чем стоимость бетона при той же производительности. Бетонные кирпичи намного проще в производстве: подходящий песчаник и цемент пропорционально смешиваются с водой, вибрируют в прессе, оставляют для отверждения в течение примерно 14-28 дней, а затем готовы к выпуску

    .

    использовать. Общее время обработки от 15 до 30 дней.Затраты на энергию довольно низкие, а загрязнение минимально [11]. Соотношение места на

    production v / s Скорость производства высока, что очень мало при изготовлении блоков AAC. Производство кирпича в обычных зажимах невозможно в сезон дождей. Темп производства

    low в обычных / обычных зажимах. (Таблица 1: пункт 13, 14, 15, 19, 21, 24)

    Блок

    AAC — это 100% экологичный строительный материал и предпочтительный материал для стен в зданиях с сертификатом LEED.Это помогает уменьшить углеродный след.

    В самой Индии блоки AAC могут предотвратить выброс 200 млн тонн CO2 в окружающую среду

    , экономия 20 миллиардов долларов каждый год.

    Балл. №

    Сравнительный анализ обожженных кирпичей и блоков из автоклавного пенобетона

    Параметр

    Обожженные глиняные кирпичи

    Блоки AAC

    Замечания

    1

    Состав материала

    Кремнезем (песок) + глинозем (глина) + известь + оксид железа

    + магнезия

    Другими словами — верхний слой почвы

    Кварцевый песок + кальцинированный гипс + известь (минеральная) и / или цемент Алюминиевый порошок + летучая зола

    Другими словами-Цемент + Летучая зола

    Было установлено, что сырье, используемое для производства блоков AAC, является экологически чистым, так как используется очень мало цемента.Использование летучей золы на этом предприятии заставляет нас утилизировать отходы тепловых электростанций. Блоки AAC могут использовать летучую золу (70% от веса), что обеспечивает наиболее конструктивное решение для летучей золы

    .

    проблема использования.

    2

    Размер

    225 мм x 100 мм x 65 мм / 230 мм x 75 мм x 115 мм

    600/625 мм x 200/240 мм x

    100-300 мм

    Для кирпичей требуется больше раствора, так как их размер меньше.Но в блоках AAC требования к строительному раствору меньше из-за большего размера.

    3

    Прецизионный размер

    5 мм (+/-)

    1,5 мм (+/-)

    Блок AAC имеет более точные размеры, поскольку он производится с использованием технологии проволочной резки на сертифицированном заводе.

    4

    Прочность на сжатие

    2.5-3 Н / мм2

    3-4 Н / мм2 (IS 2185, Часть 3)

    Блоки

    AAC имеют более высокую прочность на сжатие, т. Е. Выдерживают большие нагрузки, чем кирпичи

    5

    Плотность в сухом состоянии

    1800-2000 кг / м3

    600-800 кг / м3

    Использование блоков AAC снижает нагрузку на фундамент и другие структурные компоненты конструкции за счет меньшего собственного веса.Снижение веса стен на 55%. Наблюдается экономия стоимости конструкции до 15%.

    Благодаря уменьшению собственного веса конструкция из блоков AAC привлекает меньше сейсмической нагрузки.

    6

    Огнестойкость (8 стен)

    Около 2 часов

    До 7 часов.

    Блоки

    AAC имеют воздушные пустоты и, следовательно, имеют лучшую огнестойкость по сравнению с кирпичами из красной глины.

    Температура плавления блоков AAC составляет более 1600 градусов Цельсия, что более чем в два раза превышает типичную температуру при возгорании зданий 650 градусов Цельсия.

    7

    Энергосбережение

    Низкая

    Прибл. Снижение нагрузки на кондиционер на 25% /

    Снижение потребления электроэнергии на 25 30% при ОВК

    Блоки

    AAC устойчивы к тепловым колебаниям. Это снижает общую нагрузку на охлаждение и кондиционирование воздуха.Хотя первоначальная стоимость установки может остаться прежней, но блоки AAC сокращают работу

    и очень дорого обходится.

    8

    Повторное использование отходов

    товар

    Нет

    Летучая зола

    Блоки ААЦ используют Биопродукт электростанций

    9

    Выцветание

    Обычно присутствует

    Отсутствует

    Блоки AAC не имеют высолов, выше

    , чем кирпичи

    10

    Пигментация

    Минеральные оксиды в глине плюс природный и синтезированный минерал

    оксидные пигменты

    природные и синтезированные минеральные оксидные пигменты

    11

    Теплопроводность

    значение K = 0.81 Вт / мк

    Значение K = 0,16 Вт / мК

    Блоки AAC с очень низкой теплопроводностью сохраняют прохладу в помещении летом и тепло зимой и лучше всего подходят как для внутренних, так и для наружных работ

    строительство.

    12

    воплощенной энергии / Energy required to

    производят строительные материалы

    Высокая (900-1000 кВтч / м3)

    Низкий.(50-100 кВтч / м3)

    блоков AAC потребляют прибл. На 70% меньше энергии, чем у глиняных кирпичей. Блок AAC покрывает большую площадь

    для той же массы используемого кирпича, что позволяет сэкономить на транспортных расходах и сэкономить драгоценное топливо.

    13

    Воздействие на окружающую среду

    Расход почвы

    На один глиняный кирпич расходуется 3,2 кг верха

    почва

    Верхний слой почвы не используется

    На один квадратный фут ковра с облицовкой из глиняного кирпича потребуется 25,5 кг верхнего слоя почвы

    Использует летучую золу, которая является тепловой электростанцией

    отходы и, следовательно, отсутствие потребления верхнего слоя почвы

    Расход топлива

    На один квадратный фут коврового покрытия из глиняных кирпичей потребуется 8 кг угля

    Один квадратный фут ковра с блоками AAC потребляет 0.9677 кг

    уголь

    Выбросы CO2

    Балл. №

    Сравнительный анализ обожженных кирпичей и блоков из автоклавного пенобетона

    Параметр

    Обожженные глиняные кирпичи

    Блоки AAC

    Замечания

    Один квадратный фут ковра выделяет 17.6 кг

    СО2.

    Один квадратный фут ковра

    выбрасывает 2,2 кг CO2.

    14

    Социальное воздействие

    Труда

    Блоки

    AAC производятся в организованном секторе, который оплачивает государственные налоги и имеет стандартные производственные мощности.

    Неорганизованный сектор (детский труд широко распространен в неорганизованном секторе)

    Организованный сектор.Построение нации через корпоративное управление, статутный труд и HR

    практики

    Налоговые отчисления

    Не отчисляет в государственную казну (налоги)

    Относится к государственным налогам по форме

    Центрального акциза, НДС и Octroi

    Производственный комплекс

    Нездоровые условия труда из-за токсичных газов.В основном это ручные процессы.

    Стандартизированный завод с автоматизированной системой

    процесса.

    15

    Скорость строительства

    Сравнительно ниже

    Очень высокий за счет большего размера, легкий вес.

    Может иметь профиль «язык — паз», что позволяет ускорить строительство, сократить трудозатраты и соединить раствор

    за счет устранения вертикальных швов

    Производительность каменной кладки (с блоками AAC) увеличивается до 3 раз за счет меньшего количества стыков.

    16

    Влагостойкость

    Среднее значение

    Очень хорошо

    Блоки

    AAC не имеют микропор или непрерывных капилляров, через которые вода с внешней поверхности может попадать внутрь. Это означает более длительный срок службы красок и внутренних помещений без роста каких-либо грибков, обеспечивая более здоровые и долговечные интерьеры для пассажиров.

    Водонепроницаемые свойства

    AAC Blocks дополнительно улучшаются за счет добавления добавок на основе силикона.

    17

    Коэффициент водопоглощения

    дюйм кг / м2 x h0,5

    22 30 (всасывание за счет капиллярного действия)

    4 6 (без сплошных пор и капилляров)

    Использование блоков AAC ведет к долгому сроку службы краски и здоровым интерьерам

    18

    Водопоглощение

    % по весу

    Высокий.20% к объему

    Очень высокий. 45% к объему

    Объем AAC состоит из 20% твердого материала и 80% воздуха. Из-за закрытой ячеистой структуры AAC водопоглощение происходит только через твердый материал. Это твердое вещество составляет только 20% от объема, что сильно снижает поглощение воды AAC.

    19

    Шумопередача / Звукоизоляция

    Более 50 дБ для стены толщиной 230 мм

    40-45 дБ для стены толщиной 200 мм

    Блок AAC имеет лучшие звукоизоляционные свойства за счет наличия воздушных пустот.Блоки AAC имеют отличный класс передачи звука (STC) до 45 дБ. Следовательно, это

    идеальный материал для строительства стен в отелях, аудиториях, студиях, больницах и т. Д.

    20

    Простота использования / Удобство работы

    Низкая

    Высокий.

    Нарезается на необходимые размеры.

    Его можно распиливать, сверлить, прибивать гвоздями, рифить и т. Д. Можно использовать для создания арок, кривых и т. Д.

    Рукоятки Can Have Hand Grips,

    , который упрощает подъем и установку.

    Блоки

    AAC можно легко резать, просверливать, прибивать гвоздями, фрезеровать и нарезать канавки в соответствии с индивидуальными требованиями. Доступны нестандартные размеры.

    Упрощает гидросанитарные и электрические установки, такие как трубы или воздуховоды, которые могут быть установлены после завершения основного строительства.

    21

    Рентабельность

    Нет

    Снижение собственного веса ведет к снижению расхода стали и цемента и менее

    котлован под фундамент.

    блоков AAC снижают общую стоимость строительства

    22

    Скорость изготовления

    Низкая

    Высокая

    AAC Сокращает время строительства на 20%. Разные размеры блоков позволяют уменьшить количество стыков в кладке стен.

    Более легкие блоки делают строительство проще и быстрее.

    Простота установки. Быстро схватывается и затвердевает.

    Балл. №

    Сравнительный анализ обожженных кирпичей и блоков из автоклавного пенобетона

    Параметр

    Обожженные глиняные кирпичи

    Блоки AAC

    Замечания

    23

    Качество / Долговечность

    Обычно меняется

    Одежда форменная и законченная

    Блоки

    AAC производятся на заводе с автоматизированными процессами, поэтому они имеют одинаковое качество и, следовательно, более долговечны.

    24

    Использование воды во время производства

    Высокий, перед использованием необходимо отвердить

    Низкий, перед использованием необходимо только смачивать поверхность

    AAC экономит воду

    25

    Применимость

    Несущие и ненесущие

    -Нагрузочная несущая кладка от 2 до 3 этажа.

    -Перегородки в несущих и каркасных конструкциях.

    -Заполнение стен в каркасах многоэтажных зданий как внутренних, так и внешних.

    -Все участки заливки, в том числе в плоских плитах и ​​взамен кирпичных плит при выветривании, более

    крыша.

    Ширина диапазона применимости выше в блоках AAC, особенно они используются в

    26

    Землетрясение

    Среднее.Условное соответствие сейсмическим зонам IV и V

    Хорошо. Как правило, они соответствуют требованиям сейсмической зоны IV и V

    .

    Силы землетрясения, действующие на конструкцию, пропорциональны весу здания, поэтому блоки AAC демонстрируют отличную устойчивость к силам землетрясений.

    Они поглощают и передают меньше сейсмических сил в случае любого землетрясения. В структуре есть миллионы крошечных ячеек, которые амортизируют здания от основных сил, предотвращая прогрессирующее обрушение.Районы сейсмической активности используют исключительно блоки AAC. Доказано

    выдерживает ветровые нагрузки тропических штормов 5 категории.

    27

    Расход раствора на м3 с 1: 6

    1,40 мешок цемента

    0,5 мешок цемента

    Блоки переменного тока

    в 7 раз больше обычных кирпичей. Чем больше размер, тем меньше стыков.Меньшее количество стыков приводит к меньшему количеству строительного раствора. Всего

    60% сокращение использования минометов.

    28

    Экономия на гипсе

    общее снижение стоимости штукатурных работ на 35%

    Блоки

    AAC имеют однородную форму и текстуру, что обеспечивает ровную поверхность стен. Блок AAC, когда он построен, имеет обе стороны как светлые грани, в отличие от кирпичной кладки, у которой только одно лицо как чистое лицо.Следовательно, толщина

    Штукатурка для блока AAC намного меньше по сравнению с обычным кирпичом.

    29

    Техническое обслуживание

    Высокая

    Сравнительно меньше по своим превосходным свойствам

    Блок

    AAC снижает эксплуатационные расходы на 30-40%.

    Снижает общую стоимость строительства на 2,5%, так как требует меньшего количества стыков и снижает потребность в цементе и стали.

    Блоки с высокой изоляцией экономят до 30% затрат на электроэнергию.

    Покраска стен и штукатурка служат дольше, так как почти полное отсутствие высолов влияет на AAC. Это приводит к снижению затрат на техническое обслуживание.

    30

    Убытки из-за поломок

    Примерно от 10 до 12%

    Минимальная (1-2%)

    Если в блоках AAC есть поломка, то они будут разделены на две или три части, которые могут быть использованы в кладке как «кирпичная бита».

    31

    Устойчивость к вредителям и термитам

    Низкая

    Высокий.

    Блоки

    AAC — это неорганический, устойчивый к насекомым и прочный строительный материал для стен.

    Термиты и муравьи не едят и не гнездятся в блоках AAC.

    Блоки

    AAC не допускают распространения термитов и роста вредителей и, следовательно, продлевают срок службы дорогих деревянных интерьеров.

    32

    Устойчивость к дыму

    Среднее значение

    Хорошо.

    Блоки

    AAC полностью неорганические и, следовательно, не выделяют токсичных паров или ядовитых газов, вредных для пассажиров. Герметичность блоков также предотвращает появление токсичных паров от

    .

    распространяется на другие части здания.

    33

    Стоимость кубометра

    (регион Мумбаи)

    рупий. 4000 / —

    рупий. 3800–4000 / —

    Ставки почти на уровне

  • СТОИМОСТЬ

    В конечном счете, наиболее важным и мотивирующим фактором, который стимулирует принятие и использование любого материала, которого ждут все разработчики, подрядчики и конечные пользователи, является экономия затрат. Один блок AAC по размеру эквивалентен 8 красным кирпичам, следовательно, он уменьшает 1 / 3-й стык, в результате чего экономится раствор

    до 60% [12].Блоки AAC вырезаются автоматически, имеют точные размеры, что приводит к более тонкому слою штукатурки по сравнению с глиняными кирпичами. Он экономит раствор в штукатурке от 35% до 40% и имеет преимущество в увеличении площади ковра, а также блоки AAC позволяют резко снизить собственный вес [13]. Даже такое уменьшение собственного веса приводит к сокращению расхода стали и цемента и меньшим объемам земляных работ для фундамента. Стоимость строительных материалов варьируется от региона к региону. В Мумбаи кирпич стоит от 6 до 7 рупий за единицу.Например, один кубический метр состоит из 600 кирпичей, что стоит около 4000 рупий за кубический метр. Однако блоки AAC доступны по цене от 3800 до 4000 рупий / — за см3 [14]. Строители предпочитают AAC, учитывая многочисленные преимущества материалов, как показано выше. (Таблица 1: точки 15, 20, 28, 32)

  • ЗАКЛЮЧЕНИЕ

  • Однако заменить 7милленовые старые материалы на новые сложно. Кроме того, доступность по-прежнему остается проблемой в Индии. Блоки AAC легко доступны в южных и западных регионах страны.Блоки AAC набирают популярность в северных регионах и пользуются спросом в городах второго уровня.

    Сравнительный анализ показывает, что почти по всем параметрам блоки AAC имеют преимущество перед кирпичами из обожженной глины. Использование блоков AAC приводит к экономии общей стоимости проекта; позволяет ускорить процесс строительства, снизить воздействие на окружающую среду и социальную сферу. Таким образом, можно сделать вывод, что рекомендуется использовать блоки ACC вместо кирпича из жженой глины. Разработчикам, подрядчикам и частным лицам рекомендуется поощрять использование этого продукта, поскольку его использование отвечает национальным интересам.

    Г-н Сахил Суман Спасибо за вашу необходимую поддержку.

  • Майкл Чусид, РА, FCSI, Стивен Х. Миллер, CSI, и Джули Рапопорт, доктор философии, PE, LEED AP, Строительный кирпич устойчивого развития, спецификация строительства, май 2009 г.

  • www. Wikipedia.com

  • Чарльз (Чип) Б. Кларк мл., ЧП, AIA, LEED AP, одет в зеленое, Спецификация строительства, октябрь 2008 г.

  • www.biltechindia.com

  • конструктор.орг / экологически чистые строительные материалы

  • www.level.org.nz,

  • www.grihaindia.org, PPT, Атул Капур, HIL — Улучшение жизненных пространств Индии, 26 февраля 2013 г.

  • www.biltechindia.com

  • www.swedgeo.se, PPT Питера Нильсена, Йеруна Фрайдерса, Криса Брооса, Мике Квагебер, Переработка газобетона в автоклаве (AAC), 14 июня 2012 г.

  • www.aac-india.com

  • www.westerngranite.co.za

  • www.indiamart.com

  • www.constructionworld.in

  • www.constructionworld.in, Вершина квартала, сентябрь 2013 г.

  • .

    Leave a reply

    Ваш адрес email не будет опубликован. Обязательные поля помечены *