Газоблок автоклавный и неавтоклавный разница: Чем отличается автоклавный газобетон от неавтоклавного?

Содержание

Чем отличается автоклавный газобетон от неавтоклавного?

Автоклавирование газобетона

В последнее время в связи с ростом популярности строительных блоков из ячеистых бетонов часто возникает вопрос: в чем отличие автоклавного газобетона от неавтоклавных материалов (пенобетона и неавтоклавного газобетона)? Постараемся ответить на данный вопрос в этой статье.

Распространены несколько терминов, обозначающих строительные материалы из ячеистого бетона – газобетон, пенобетон, кроме того есть такие характеристики, как автоклавный и неавтоклавный. Разберемся в определениях. Ячеистый бетон – это общее наименование всех легких бетонов, которые характеризуются наличием множества пор (ячеек) в своей структуре, которые придают улучшенные физико-механические свойства материалу.

По способу порообразования ячеистые бетоны делятся на пенобетоны и газобетоны. Как следует из названия, в одном материале для создания ячеистой структуры применяется химическая пена, а в другом газ.

Пенобетон –  застывший в поризованном состоянии цементно-песчаный раствор. Ячеистая структура в нем формируется за счет введения и «взбивания» химических пенообразователей. Как правило, цех по производству пенобетона («заводом» назвать эту фабрику крайне сложно), небольшой по площади с преобладанием ручного труда и неквалифицированного персонала. Объем производства крайне мал, оборачиваемость средств низкая, поэтому экономить в таком производстве приходится буквально на всем, что явно не способствует повышению качества готового продукта.

Насыщения бетона газом, выделяющимся при реакции извести и алюминиевой пасты – процесс достаточно сложный и требующий тщательного контроля за дозировкой этих компонентов. Обеспечить это возможно только на крупных заводах с качественным автоматизированным оборудованием, и еще недавно термин «газобетон» уже по умолчанию означал наличие автоклавной обработки. Так постепенно в сознании потребителя сформировалось устойчивое и вполне объективное мнение: пенобетон – это дешево и с посредственными характеристиками; газобетон – немного дороже, но значительно лучше качество и стабильные свойства.

В конкурентной борьбе за покупателя, производители пенобетона вместо снижения цены или улучшения качества своих изделий, решили просто уйти от полностью дискредитированного термина «пенобетон», заменив его более благозвучным – НЕавтоклавный газобетон. В сути своей материал не изменился, теперь в ту же химическую пену добавляется немного газообразователя, затем все также разливается в опалубку и раствор набирает прочность под открытым небом. Для конечного потребителя, кроме увеличения цены продукта, это переименование ничего не несет.

Что такое автоклавирование и для чего оно нужно?

Автоклавная обработка – пропаривание в металлических капсулах (автоклавах) при высоком давлении (12 атм.) и высокой температуре (191оС) – позволяет получить материал с такими свойствами, какие невозможно получить в обычных условиях. Автоклавирование газобетона производится не только для того, чтобы ускорить процесс твердения смеси. Основной смысл состоит в том, что в автоклаве в структуре газобетона происходят изменения на молекулярном уровне, и образуется новый минерал с уникальными эксплуатационными характеристиками — тоберморит. Поэтому автоклавный газобетон – это искусственно синтезированный камень, а неавтоклавные бетоны – фактически застывший в поризованном состоянии цементно-песчаный раствор.

Автоклавный  газобетон и неавтоклавные материалы принципиально различаются по целому ряду параметров, начиная от состава и заканчивая физико-техническими и эксплуатационными характеристиками.  А если быть точнее, автоклавный газобетон превосходит их по всем показателям.

Рассмотрим основные показатели:

1. Стабильность качества автоклавного газобетона

Автоклавный газобетон изготавливается только на крупном производстве и на стройплощадку попадает в виде готовых блоков. Производство автоклавного газобетона в кустарных условиях невозможно, так как при изготовлении необходимо контролировать одновременно несколько десятков процессов и параметров. Современные заводы автоклавного газобетона имеют высокую степень автоматизации (около 95%) и практически исключают влияние человеческого фактора на производственный процесс.

Автоклавный газобетон производится согласно современному ГОСТу 2007 года, что подтверждается протоколами испытаний, продукция имеет сертификат качества, и клиент может быть уверен в надлежащем качестве.

Для производства пенобетона и неавтоклавного газобетона не требуется большого завода и огромных капиталовложений, что обеспечивает низкий порог входа в этот бизнес. На практике это означает, что имея небольшую бетонно-растворную установку, опалубку и пару низкоквалифицированных рабочих, можно организовать кустарное производство с нестабильными показателями качества, гордо назвав это заводом или фабрикой по производству стройматериалов. Обеспечить в таких условиях стабильность характеристик продукта практически невозможно, поскольку дозирование компонентов производится вручную и, как правило «на глаз», а старый ГОСТ, которому уже больше четверти века, допускает производство таких изделий.

2. Прочность

Ячеистые бетоны изготавливают различной плотности: от 400 до 800 кг/м3 классом прочности на сжатие от В1,5 до В7,5. Самыми ходовыми являются плотности D500 и D600, при этом автоклавный газобетон на этих плотностях имеет класс по прочности на сжатие B2,5 и B3,5 соответственно.

Неавтоклавные же материалы значительно проигрывают автоклавному газобетону по физическим свойствам и прочности при одинаковой плотности. Например, при плотности D600 они имеют прочность на сжатие в два раза ниже, чем у автоклавного газобетона! Кроме того, производители неавтоклавных материалов просто не могут выпускать строительные блоки с плотностью ниже D600, т.к. эти блоки не имеют прочности вообще, а применять их в строительстве недопустимо.

 

3. Возможность крепления

Автоклавирование значительно повышает прочностные характеристики газобетона. В основание из автоклавного газобетона можно закрепить не только шкафы и полки, но и бойлеры, кондиционеры, вентилируемые фасады. Причем навесные фасады могут быть как из легкого композита так и из тяжелого керамогранита. Для этого применяются анкера с полиамидными распираемыми элементами. Например, один анкер 10х100 выдерживает нагрузку на вырыв по оси до 700кг, что вполне сравнимо с показателями полнотелого кирпича или тяжелого бетона.

Говорить о креплении в пенобетон или НЕавтоклавный газобетон просто не приходится. Гвоздь или шуруп просто вдавливается в стену руками, поэтому применение обычного механического крепежа здесь невозможно. Можно использовать для крепления НЕтяжелых предметов, например, зеркал или крючков для одежды, дорогостоящий двухкомпонентный химический анкер, что дает хоть какую-то иллюзию надежности. Но при навешивании на стену кухонного гарнитура даже использование «химии» не поможет, т.к. под весом шкафа с посудой произойдет разрушение неавтоклавного материала в месте крепления и из стены просто выпадет кусок блока.

4. 

Однородность

При производстве автоклавного газобетона газообразование происходит одновременно во всем объеме материала. Параллельно с газообразованием происходит отверждение. По мере роста массива на опалубку от закрепленных на ней специальных вибраторов периодически  подается импульс, который «встряхивает» массив, выгоняя из него крупные пузыри газа и исключая наличие раковин и воздушных мешков в готовых блоках. В результате поры одного размера и равномерно распределены по всему объему материала. Строительные блоки из автоклавного газобетона получают в результате разрезания большого массива, что гарантирует идеальное и одинаковое качество всех блоков.

Неавтоклавный газобетон и пенобетон получают введением в бетонную массу пены, газообразователей и перемешивая ее. В итоге часто случается, что пузырьки, как более легкие компоненты смеси, всплывают вверх, а более тяжелые наполнители оседают вниз. Получается неравномерное распределение пор в блоке, и за счет этого нет возможности добиться единых характеристик на разных блоках. Технология производства неавтоклавного газобетона исключает возможность встряхивания массива, поэтому наличие пузырей диаметром 50-70 мм – обычное дело. В таком материале часто возникают более холодные участки стены с выпадением конденсата на поверхности, а также трещины – в местах ослабления кладки крупными пузырями воздуха.

5. Усадка при высыхании

Набор прочности неавтоклавным ячеистым бетоном сопровождается значительной его усадкой, которая, в свою очередь, приводит к растрескиванию готовой кладки. Очень часто приходится видеть, как на недавно построенном и отделанном здании появляются множественные трещины, отслаивается отделочный слой, отваливается штукатурка. Эти процессы могут протекать в течение нескольких лет  –  того самого периода, пока идет «набор прочности».

Более того, трещинами испещрены блоки еще до того, как они уложены в кладку. Избавиться от усадки и трещин можно только автоклавированием, но в условиях кустарного производства это невозможно. Поэтому продавцы пенобетона и неавтоклавного газобетона идут на маркетинговые уловки, добавляя фибру (бумагу, пропитанную раствором серной кислоты и роданидом кальция) и называя это «армированным пенобетоном», устойчивым к растрескиванию. Для конечного потребителя, опять же кроме увеличения стоимости, фибра ничего не дает, ведь любой человек, даже не связанный со строительной индустрией, понимает, что если добавить бумагу в бетон, то никаких чудодейственных свойств, обещанных продавцами пенобетона, у материала не появится.

Нужно отметить, что чем легче (а как следствие, и теплее) материал, тем больше усадка. Опыт строительства показывает, что стены из неавтоклавных ячеистых бетонов  нельзя просто зашпаклевать и покрасить – внутри их приходится закрывать гипсокартоном, а для внешней отделки применять навесные фасады с креплением в перекрытие или кирпич.

Автоклавный газобетон полностью набрал прочность уже в процессе производства и автоклавирования, поэтому усадочные деформации ему не грозят.

К примеру, для автоклавного газобетона показатель усадки не превышает 0,4 мм/м, тогда как для неавтоклавных материалов он составляет в 10 раз больше — до 5 мм/м.

6. Экологичность

Автоклавный газобетон является абсолютно экологичным и аэропроницаемым материалом. Поэтому в доме из автоклавного газобетона всегда благоприятный микроклимат для проживания, сходный с климатом деревянного дома. Газобетон производится из минерального сырья, поэтому совершенно не подвержен гниению, а благодаря способности к регулированию влажности воздуха в помещении, полностью исключается вероятность появления на нем грибков и плесени.

Пенобетон может изготавливают из самого дешевого местного сырья: песка, отходов щебеночного производства, кроме того, в качестве пенообразователей применяются химические добавки, что, несомненно, снижает показатели экологичности дома из пенобетона. Также химические компоненты вносятся в блок с фиброй, пропитанной кислотами, хлоридами и роданидами. Даже присутствующие в небольших количествах, эти вещества способны выделяться и накапливаться в воздухе жилых помещений.

7. Геометрия

Точность геометрических размеров блоков из автоклавного газобетона регулируется современным ГОСТом, допустимые отклонения – по длине до 3 мм, по ширине до 2 мм, по толщине – до 1 мм. Блоки получаются путем резки струнами большого массива автоклавного газобетона и нарезать неровно на таком оборудовании просто нельзя.

Неавтоклавный газобетон и пенобетон разливают в опалубку с ограниченными циклами использования. Ввиду все той же экономии, опалубка используется в несколько раз дольше ее нормативного срока службы, а поскольку опалубка разборная, то в силу ее деформаций и износа собрать ее правильно с каждым разом становится все сложнее и сложнее – отсюда и отклонения по геометрии блоков. Для неавтоклавных газобетона и пенобетона отклонения геометрических размеров допускаются значительно больше — по толщине могут достигать 5 мм (старый ГОСТ 1989 года).

Большой разбег в геометрических размерах блоков из неавтоклавных материалов влечет ухудшение всех показателей кладки:

  • — увеличивается толщина слоя раствора, приводя к увеличению стоимости кладки
  • — увеличивается усадка кладки, т.к. помимо блоков усаживаются и толстые растворные швы
  • — образуются мостики холода из-за толстых растворных швов
  • — требуется трудоемкое выравнивание вертикальной поверхности стен
  • — расход цементно-песчаного раствора в 5-6 раз выше, чем кладочного клея
  • — увеличивается толщина и трудоемкость отделочных работ
  • — снижается прочность кладки

8. Теплоизоляционные свойства

Плотность пенобетона или газобетона напрямую влияет на их теплоизоляционные свойства и, чем материал плотнее,  тем теплоизоляция ниже. Пенобетон или неавтоклавный газобетон с низкой плотностью – это отличный теплоизоляционный материал, но прочность у него крайне низкая и применять его для кладки стен нельзя. В качестве конструктивного, особенно для несущих стен, требуется плотность выше, а значит, материал будет «холоднее». К примеру, для Иркутской области при использовании неавтоклавных материалов плотность ячеистого бетона должна быть минимум 700 кг/куб. метр. И без того невыдающиеся теплоизоляционные свойства значительно ухудшаются ведением кладки на цементно-песчаном растворе с толстыми швами. Это значит, что толщина стены из пенобетона или неавтоклавного газобетона с плотностью D700 для нормальной теплоизоляции без применения утеплителя должна быть около 65-70 см.

Стена из автоклавного газобетона обеспечивает такие же показатели теплозащиты и прочности при толщине всего 40 см, при этом достаточно плотности D400-D500. Объективно автоклавный газобетон обладает лучшими, чем неавтоклавные материалы, показателями прочности и теплоизоляции при меньшем весе.

Подведем итоги

  • — Автоклавный газобетон превосходит неавтоклавные материалы по физико-техническим свойствам благодаря автоклавной обработке.
  • — Автоклавный газобетон производится только на современных заводах со стабильным гарантированным качеством на уровне мировых стандартов.
  • — Автоклавный газобетон отличается от неавтоклавных материалов более высокой прочностью при меньшем весе.
  • — Автоклавный газобетон не дает усадки в процессе эксплуатации.
  • Блоки из автоклавного газобетона отличаются точными размерами и равномерной плотностью массива.
  • Автоклавный газобетон является искусственным природным минералом, что обуславливает высочайший уровень его экологичности.
  • Применение автоклавного газобетона позволяет возвести теплоэффективный дом с однородной стеной 400 мм, не требующей утепления.

Строительство домов из неавтоклавных материалов дешевле только на первый взгляд. Если учесть плохую геометрию неавтоклавных материалов, худшие показатели теплоизоляции и прочности по сравнению с автоклавным газобетоном, необходимость в большем расходе кладочных и выравнивающих материалов, то выгода строительства из неавтоклавных  материалов отсутствует.  

Неавтоклавный и автоклавный газобетон: плюсы и минусы

Прежде, чем разобрать плюсы и минусы газобетона, необходимо уточнить, что газобетон бывает двух видов — неавтоклавного и автоклавного твердения. Рассмотрим отличия автоклавного и неавтоклавного газобетона.

Неавтоклавный газобетон твердеет в стандартных условиях (в камерах термической обработки). Такая технология производства обеспечивает минимальные расходы на оборудование и электроэнергию. 

Сырьем для производства являются цемент, минеральный заполнитель (песок, зола-уноса, доломитовая пыль), вода, газообразующая добавка (на основе алюминиевой пудры) и модифицирующие добавки.

Автоклавный газобетон получают в результате твердения газобетона в автоклавах, при температуре 120-200оС и давлении P=1,4 МПа. Сырьем для производства газобетона являются: известь, цемент, минеральный заполнитель, вода, газообразующая добавка (на основе алюминиевой пудры) и модифицирующие добавки. За счет использования извести, значительно сокращается расход цемента, соответственно, себестоимость по сырью у автоклавного газобетона ниже, чем у неавтоклавного. Автоклавное твердение обеспечивает газобетону более высокую прочность в отличие от неавтоклавного.


Можно выделить следующие плюсы автоклавного и неавтоклавного газобетона в строительстве:

1. Экономичность строительства. Невысокая стоимость материала, а также большие размеры блоков при малом весе обеспечивают снижение расходов на строительство.

2. Низкая плотность, низкая теплопроводность. Газобетонные блоки имеют плотность от 400 до 800 кг/м3 и коэффициент теплопроводности от 0,1 до 0,21 Вт/(м*оС), поэтому являются легкими и теплыми.

3. Хорошая звукоизоляция. За счет пористой структуры газобетон обеспечивает изоляцию шума в 10 раз лучше, чем кирпичная стена такой же толщины.

4. Пожаробезопасность. Газобетон является негорючим материалом, устойчив к воздействию огня, имеет первую степень огнестойкости, тем самым превосходя обычный бетон.

5. Паропроницаемость. За счет открытопористой структуры, газобетон имеет хорошую паропроницаемость. Коэффициент паропроницаемости составляет от 0,23 до 0,4 мг/(м*ч*Па). Дома из газобетона «дышат», в них комфортный микроклимат.

6. Экологичность. В состав газобетона входят природные, экологически чистые компоненты. Материал не выделяет вредных веществ, не стареет и не подвержен гниению. Радиационный фон составляет около 9-11 мкР/ч. Для сравнения, уровень радиационного фона в Москве составляет в среднем 13-15 мкР/ч.

Теперь рассмотрим минусы газобетона:

Для производства автоклавного газобетона требуется очень дорогое оборудование, большие энергозатраты и производственные площади. Поэтому мелкосерийный выпуск блоков становится невыгоден. И это главный минус автоклавного газобетона. В этом плане производство неавтоклавного газобетона становится наиболее привлекательным для малого бизнеса. 

У автоклавного газобетона имеется еще один недостаток – из-за повышенного водопоглощения, необходимо исключать воздействие окружающей среды на материал, т. е. обязательно закрывать автоклавный газобетон штукатуркой, декоративными фасадами и т. д.

 

 

Отличие неавтоклавного газобетона от автоклавного

Именно здесь кроется главное различие материалов.
Автоклавный газобетон в отличие от неавтоклавного подвергается обработке в специальной печи, в автоклаве при температуре +180 °С и давлении до 14 бар. В газобетоне при этом образуется новый минерал — доберморит. Несомненным плюсом является то, что благодаря ему повышается прочность материала. За счет своих характеристик автоклавный бетон больше способов применения. Он может использоваться, например, в армированных конструкциях — перемычках, панелях. Автоклавный газобетон готов к использованию сразу после обработки в автоклаве. У автоклавной обработки имеются и недостатки: дорогостоящее оборудование, специфика его эксплуатации, требующая высококвалифицированного обслуживающего персонала, высокая металлоемкость автоклавов, низкий коэффициент использования внутреннего объема автоклава. Именно поэтому стоимость таких блоков на порядок выше стоимости неавтоклавного газобетона.

Производство неавтоклавного газобетона отличается от автоклавного отсутствием обработки в автоклаве. Газоблок, изготовленный по разной технологии, существенно отличается и по своим свойствам. При неавтоклавном производстве смесь для получения газобетона оставляют твердеть в обычных условиях. Это относительно дешевый способ: минимальны затраты электроэнергии, нет нужды применять специальное оборудование. Однако он не позволяет добиться высоких характеристик по прочности.

Сегодня неавтоклавный газобетон изготавливается также с применением современного технологического оборудования (например, пропарочной камеры), новых видов тепловлажностной обработки. Именно такой способ применяется на нашем заводе газобетона, что существенно улучшает характеристики газоблока. При этом позволяет сохранить низкую цену, за которую он и полюбился индивидуальным застройщикам.

Сравнение газобетона автоклавного и неавтоклавного, отличия и характеристики

Газобетон бывает автоклавным и неавтоклавным, и многие строители задаются вопросом – в чем различия между ними.

Давайте вместе в этом разберемся, но забегая наперед скажем, что автоклавный газобетон является намного более качественным материалом, и далее мы расскажем почему.

 

Что такое автоклавная обработка газобетона?

Автоклавная обработка – этап обработки газобетона высокой температурой (190°С) под большим давлением в течении 12 часов. Автоклавами называются металлические емкости, в которые помещаются разрезанные газоблоки.

Обработка автоклавом делается для следующих целей:

  1. ускорение твердения газобетона;
  2. повышение прочности;
  3. уменьшение усадки;
  4. улучшение однородности структуры;
  5. улучшение геометрии блоков.

Также автоклав меняет структуру газобетона на молекулярном уровне, образуя новый материал – тоберморит. Этот синтезированный камень обладает свойствами, которые невозможно получить в обычных условиях при стандартном давлении и температуре. 

Повторимся, что неавтоклавный газобетон твердеет в естественных условиях, и для его производства дорогое и современное оборудование не требуется. Другими словами, многие производители штампуют газоблоки у себя в гаражах, что не внушает особого доверия.

А теперь более подробно разберемся в различиях газобетонов, и начнем мы с прочности.

Сравнение автоклавного и неавтоклавного газобетонов

Важно отметить, что в видеоролике тестируется неавтоклавный газобетон, в который было добавлено фиброволокно, оно существенно увеличивает прочность блоков. Но отметим, что в реальности, фибру в производстве неавтоклавного газобетона применяют далеко не все, так как она достаточно дорогая.

Прочность

Газобетон без автоклава менее прочен, особенно когда он свежий. Ведь ему, как и обычному бетону, нужно еще время чтобы набрать прочность, а у автоклавного твердение ускорилось в сотни раз благодаря высокотемпературной обработке паром. Но даже при полном затвердении обеих материалов, прочность автоклавного выше на половину и более.

К примеру, автоклавные марки газобетона D500 и D600 обладают классом прочности B2.5 — B3.5, в то время как неавтоклавный аналог той же марки набирает в лучшем случае класс B2.

Усадка

Большая усадка блоков может создать множественные трещины в кладке, более того, трещины могут появляться в течении года и более. Чтобы свести такие процессы к минимуму, усадка блоков должна быть минимальной.

Усадка неавтоклавного газобетона составляет от 3 до 5 мм на метр, автоклавного – в десять раз меньше. То есть автоклавный газобетон практически не дает усадочных трещин, при правильной кладке.

Геометрия блоков

Геометрия блоков также очень важна, и чем блоки ровнее между собой, тем лучше. Ведь если блоки отличаются между собой на 5 мм, то разницу в уровне необходимо выравнивать клеем, а это мостики холода, которые сильно ухудшают теплоизоляционные характеристики кладки.

Более того, толстые швы дают большую усадку, которая опять же может стать причиной трещин. Опытные строители скажу, что разность в уровнях можно выровнять тёркой по газобетону, но представьте себе, сколько времени на это уйдёт.

А теперь подумаем, где геометрия блоков будет лучше, на высокотехнологичном заводском оборудовании с автоклавами, или в гаражных условиях? Ответ очевиден!

Большинство строителей считает, что самые лучшие и самые ровные блоки получаются у компании AEROC. Средняя цена за куб их газобетона составляет 4000р.

Однородность структуры

Под однородностью понимается количество пустот (пузырей), которые определенным образом распределены в газобетоне, и чем они равномерней, тем лучше. Технология автоклавного газобетона гарантирует идеальное распределение пустот, за счет того, что пузыри образовываются и сразу же твердеют, а отдельные блоки получают после разрезания одного большого блока.

Неавтоклавный газобетон делается совсем иначе. В бетонную смесь добавляют пену и газообразователи. В результате пузыри могут подняться ближе к поверхности, а более тяжелые элементы упадут вниз. В итоге, распределение пузырей будет неравномерным.

Теперь давайте подумаем, чем это грозит. Во-первых, там, где меньше пузырей – меньше прочности, а там, где пузырей мало – мостик холода, через который будет быстрее уходить тепло. То есть, показатели прочности и теплопроводности неавтоклавного газобетона очень нестабильны.

Теплопроводность

Плавно переходя от темы равномерности структуры к теплопроводности скажем, что неравномерная структура пузырей ухудшает усредненную теплопроводность блока, и естественно, что в автоклавном газобетоне равномерность пузырей лучше и следовательно, теплоизоляция тоже лучше.

Вывод

Автоклавный и неавтоклавный газобетоны сильно отличаются между собой по ряду параметров, и можно с уверенностью сказать, что автоклавный материал превосходит своего собрата по всем показателям, кроме одного – цены. Да, неавтоклавные газоблоки дешевле, но, если посчитать, сколько проблем возникает при его кладке, сколько дополнительных материалов, работ и времени придется проделать, то советуем вам хорошенько подумать, делая свой выбор.

Лучше один раз построить дом грамотно, из качественного материала, и быть уверенным, что он без проблем простоит долгие годы.

Автоклавный и неавтоклавный газобетон — отличия

Изначально технология создания газобетона предусматривала его производство только на технологичном производстве. Но со временем спрос на этот материал так возрос, что газобетон автоклавный стал использоваться в равной мере с подобным видом ячеистого материала, произведенного без дополнительной тепловлажностной обработки. И если нырнуть в пучину огромного выбора газобетона неподготовленному новичку, то он может запросто потонуть в потоке предоставляемой информации о нем. Так чем отличается автоклавный газобетон от неавтоклавного и какой лучше всего приобрести? На эти злободневные вопросы найдете ответы в нашей публикации.

Технология производства газобетона

Прежде чем говорить о существенных различиях в свойствах и качестве автоклавного газобетона и блоков естественной выдержки рассмотрим их компонентный состав, который абсолютно идентичен:

  • бездобавочный портландцемент марок М300, М400, иногда используют М500;
  • чистый песок мелких фракций – от 2,0 до 2,5 мм.
  • вода средней жесткости без химических примесей;
  • газообразователь — пудра или паста алюминиевая;
  • вещество запускающее химические реакции вспучивания – известь, вид, состояние и дисперсность которой зависит от способа производства;
  • модификаторы, улучшающие качество конечного продукта – добавляются по желанию и не являются обязательными составляющими.

Еще одно сходство, объединяющее автоклавный и неавтоклавный газобетон – принцип производства раствора.

На первом этапе в соответствии с технологией готовится обычный цементно-песчаный раствор необходимой консистенции. Полученную смесь распределяют по опалубкам. После чего в нее вводится алюминиевый порошок и известь. Именно реакция этих компонентов обеспечивает образования газа, раствор вспучивается, образуя поры.

Дальше технологии расходятся на этапе выдержки и обработки газобетона. При естественном твердении готовый раствор заливается в опалубку, формирующую блоки нужного размера. После набора прочности изделия распалубливают и отправляют на склад готовой продукции.

При использовании автоклава для газобетона, этот этап происходит немного сложнее. А именно, смесь заливают в монолитную опалубку. После ее вспучивания и набора минимальной прочности газобетонную глыбу разрезают на изделия необходимых размеров и отправляют их для дополнительного обжига в автоклав, где поддерживается температура в пределах 200 0С и давление в 10 Бар. Такие условия по максимуму активируют процессы гидратации цемента и позволяют удалить из бетона лишнюю влагу.

В итоге получается, что изделия естественной сушки – это всего лишь затвердевшая вспученная цементно-песчаная смесь, когда автоклавные газоблоки в процессе обжига образуют новый синтетический компонент – тоберморит, качественно улучшающий характеристики конечного продукта.

Свойства неавтоклавного и автоклавного газобетона

Полученные блоки, изготовленные по двум разным технологиям настолько разные как по виду, так и по своим характеристикам, что даже неопытный обыватель сможет различить их между собой.

Внешние показатели

Первое с чем сталкивается покупатель при выборе, так это с внешним видом материалов. Казалось бы, какая разница как выглядят стеновые блоки, которые впоследствии все равно нужно штукатурить. Однако внешний вид – наиболее точная визуальная характеристика, которая поможет отсеять некачественные изделия.

Геометрические размеры

Если сравнивать газоблоки по критерию геометрии, то изделия автоклавного твердения отличаются большей точностью. Это отчасти заслуга автоклавирования и, конечно же, резанной технологии. Даже ГОСТы регламентируют отклонения линейных размеров от номинальных по-разному, в зависимости от применяемого способа производства.

Допустимые отклонения по параметрам Автоклавный газобетон Неавтоклавный газобетон
Длина, мм/м 3 5
Ширина, мм/м 2 4
Высота, мм/м 1 2

Эти данные только подчеркивают тот факт, что автоклавный газобетон отличается точной геометрией готовых изделий, которая предотвращает:

  • промерзание стен за счет утолщения кладочного шва, которым компенсируются недостатки в форме блоков;
  • перерасход кладочного клея, ведущий к увеличению затрат на него.
Цвет

При покупке блоков обращайте внимание на их цвет. Конечно, он будет серым в случае изделий естественного твердения и практически белый у автоклавного газобетона. Различие в оттенках блоков и неоднородности цвета говорит об изменениях в производственном процессе, которые зачастую приводят к снижению эксплуатационных характеристик.

Автоматизированное оборудование для производства автоклавного газобетона сводит любые ошибки к нулю, что изначально считается гарантом качества и долговечности. К тому же такие масштабные цеха дополнены собственной строительной лабораторией, своевременное проведение испытаний в которой вычленяют несоответствия в технологии или рецептуре.

Физико-механические свойства

Газобетонные блоки отличаются не только по внешним показателям и цвету, но и по физико-механическим свойствам.

Прочность

Газобетон представлен богатой номенклатурой марок по прочности – от В1 до В7,5. Их широко применяют не только в качестве создания несущих конструкций, но и для утепления стен. Если сравнивать газобетоны, произведенные по различным технологиям, то автоклавные отличаются большей прочностью при одинаковой плотности с неавтоклавными.

Например, блоки плотностью D600 должны иметь класс по прочности В3,5. Если для автоклавных изделий показатель соблюдается, то с естественно выдержанными изделиями класс прочности едва ли дотягивает до половины нормы. Еще хуже дела обстоят с прочностными показателями у газобетона, произведённого своими руками. Если хотите лично убедиться в этом, купите по блоку и протестируйте в независимой строительной лаборатории. Результаты будут на лицо.

Теплопроводность

Теплопроводность газобетона напрямую зависит от показателей плотности этого материала. Чем ниже марка по плотности блока, тем качественнее его теплоемкостные качества. Разумнее приобрести изделия меньшей плотности, но с более высокими прочностными характеристиками, уменьшая этим показатель теплопроводности стен.

Усадка

Слабейшая сторона любого ячеистого бетона – это его усадка после возведения стен. При применении неверной строительной методики могут появиться трещины, и произойдет отслоение штукатурного слоя. Процессы усадки газобетона естественной выдержки могут длиться до нескольких лет, когда автоклавированные блоки практически лишены такого недостатка, так как при тепловлажностной обработке они уже достигли марочной прочности и полного высыхания.

К тому же, выдержанные газобетонные блоки в естественных условиях далеки от идеальных показателей, что негативно проявляется в виде усадки. Это не только ведет к нарушению линейных размеров, но и к разрушению структуры.

Подводя итоги, можно с легкостью сделать вывод, что блоки из газобетона автоклавного твердения обладают неоспоримыми преимуществами над изделиями естественной выдержки. Но в любом случае при покупке такого стенового материала всегда спрашивайте документы, удостоверяющие его качество.

Автоклавный и неавтоклавный газобетон — что лучше?

Автоклавные блоки формируются при большой температуре и давлении, неавтоклавные — твердеют при атмосферном давлении или в условиях нагревания. Что лучше и почему?

 

Главные отличия АВТОКЛАВНОГО и неавтоклавного ГАЗОБЕТОНА:

  • Качество. Автоклавные блоки изготавливаются только в заводских условиях. Производить автоклавный газобетон в подпольных условиях невозможно, а неавтоклавный — твердеет в естественной среде, поэтому изготовлять его можно в «кустарных» условиях;
  • ГОСТ. Автоклавный газобетон производится согласно ГОСТу 2007 года — ГОСТ 31360-2007, такие блоки имеют сертификат качества. Клиенты могут быть уверены в качестве покупаемой продукции. Неавтоклавный газобетон изготавливается по ГОСТу 25485-89 и уже долгое время технология и качество не изменяется.
  • Прочность. Ячеистые бетоны изготавливают разной плотности: от 400 до 800 кг/м3 классом. Наш самый ходовой блок является D500, при этом его плотность имеет класс по прочности на сжатие В2,5. Прочность неавтоклавного бетона может быть меньше В1,5, конструкция на таких блоках может не выдержать нагрузки;
  • Крепление. Автоклав значительно повышает прочность газобетона. В основание из автоклавного газобетона можно закрепить не только шкафы и полки, но и бойлеры, кондиционеры, вентиляционные фасады;
  • Усадка не страшна. В сравнение с неавтоклавным газобетоном, автоклавные блоки полностью набирают свою прочность уже в процессе производства. Поэтому усадка им не страшна. Для автоклавного газобетона показатель усадки не превышает 0,5 мм/м, тогда как для неавтоклавных материалов он составляет от 1 до 3 мм/м. Неавтоклавные блоки дают большую усадку, она достигает до 0,23— 0,34 мм/м. Это может сильно повлиять на конструкцию здания;
  • Экологичность. Мы не устанем говорить, что наш автоклавный газобетон полностью экологичный материал. Микроклимат в постройке из автоклавных блоков можно сравнивать с климатов деревянного дома. Газобетон изготавливается из материального сырья, поэтому он не поддается гниению. А его способность регулировать влажность, исключает вероятность появления плесени и грибков. В составе неавтоклавного газобетона чаще всего добавляют смесь шлаков и золы. В результате химической реакции, полученный состав выделяет сферические поры;
  • Геометрия. Точность геометрии блоков из автоклава регулируется современным ГОСТом. Геометрия неавтоклавный блоков разнородна. Блоки начинают крошиться и скалываться;
  • Теплоизоляция. По сравнению с неавтоклавными блоками и кирпичом, автоклавный газобетон обладает на 30% лучшим показателем по теплоизоляции.

Давайте подведем итоги:

  • Неавтоклавные блоки дешевле, чем бетон из автоклава;
  • Газобетонные блоки автоклавного твердения отличаются физико-механическими свойствами
  • Богатый выбор марок по прочности. Прочность автоклавных газоблоков выше в полтора-два раза неавтоклавных материалов;
  • Производят автоклавные блоки только на современных заводах;
  • Автоклавные блоки лишены такого недостатка, как усадка;
  • Соответствие параметров ровности автоклавных блоков;
  • Блоки из автоклава абсолютно экологичны.

Как мы видим, автоклавный газобетон превосходит неавтоклавный практически по всем показателям. На нашем заводе ПТЖБ изготавливаются газоблоки из автоклава. Только так мы можем быть уверенны в качестве своих изделий. Здания из таких блоков получаются более прочные, а постройка проходит легче и проще.

Разница между автоклавным и неавтоклавным газобетоном

В настоящее время стремительно растет спрос на строительные блоки, производимые из ячеистых бетонов и часто можно услышать вопрос: «в чем разница между автоклавным и неавтоклавным газобетоном?». В рамках этой статьи будут рассмотрены основные отличия и показатели этих изделий.

Характеристики материала

Для начала необходимо внести ясность в терминологию. Под ячеистыми бетонами понимают все легкие бетоны в процессе изготовления которых в структуре образуются ячейки (поры). В свою очередь, он делится на пенобетон и газобетон, в зависимости от технологии создания пор. Следующая ступень деления возникает в зависимости от процесса твердения – автоклавный или неавтоклавный.

Автоклавирование

При пропаривании смеси необходимой для производства газобетона при давлении выше 12 атмосферных и температуре свыше 190 градусов Цельсия в аппаратах, называемых автоклавами, получают новый материал с характеристиками, которые невозможно получить в нормальных условиях – этот процесс и называется автоклавирование. В результате этого структура бетона меняется на молекулярном уровне и получается новый материал с совершенно уникальными показателями, называемый тоберморит.

Неавтоклавный бетон – это застывший естественным образом или с применением пара, но при нормальном атмосферном давлении раствор с порами, в то время как автоклавный газобетон является искусственно созданным камнем. Они принципиально отличаются по многим показателям. Имеют разный состав и различные физико-технические параметры, которые у газобетона автоклавного твердения на порядок выше.

Основные характеристики материалов:

Качество

Качество автоклавного газобетона всегда, вне всяких сомнений, поскольку его производство — это чрезвычайно сложный и невыполнимый в кустарных условиях технологический процесс. Во время производства нужно одновременно контролировать множество процессов и параметров, для этого на современных заводах степень автоматизации доходит до 95 процентов и практически исключает возможность несоблюдения технологии по вине человека. Изготовление, как правило, происходит на крупных заводах и материал привозят на стройплощадку уже в виде готовых строительных блоков. Технология описана в современном ГОСТе от 2007 года и обязательно должна подтверждаться протоколами испытаний и сертификатами на продукцию. Для изготовления пеноблоков и газобетона, таких мощностей не требуется и на первый взгляд это кажется плюсом. Ведь продукция получается более дешевой. Но сможете ли вы исключить риск некачественного производства или вовсе кустарного изготовления? При покупке автоклавного газобетона, такой вопрос не встанет, ведь вы всегда можете быть уверены в его качестве на 100%.

Однородность

Неавтоклавный газобетон производят при добавлении в бетонную массу газообразователя и перемешивая ее. В результате бывают случаи, при которых пузырьки, обладая меньшим весом, всплывают вверх, а наполнители, наоборот, оседают внизу. В итоге готовая продукция в виде строительных блоков получается неоднородная и даже может обладать различными параметрами. В случае производства автоклавного газобетона все совершенно иначе. Процесс газообразования и твердения происходит одновременно и протекает равномерно по всему объему производимого материала. Как итог поры в готовом материале распределены равномерно и после завершения этапа резки готового материала на строительные блоки, они получаются идеального качества и однородной структуры.

Крепления

Поскольку газобетон получается очень прочным на нем возможно закрепить тяжелые материалы и оборудование. Например, вентилируемые фасады, выполненные не только из легких материалов, но и тяжелые из керамогранита. Для того чтобы крепление было надежным используют анкерные болты с полиамидными распираемыми элементами. В итоге при использовании, например, анкера 10х100 выдерживается нагрузка на вырыв по оси до 700 кг, что очень близко к значениям полнотелого кирпича.

Усадка

При наборе прочности происходит значительная усадка неавтоклавного газобетона в результате которой появляются трещины в готовой кладке, отваливается штукатурка или происходит отслоение отделочного слоя. Все это длится на протяжении 3-5 лет пока материал не достигнет своей прочности. Зачастую стены при использовании таких материалов невозможно только зашпаклевать и покрасить, как правило, требуются более сложные работы. Внутри приходится производить отделку гипсокартонном, а снаружи использовать кирпич или навесные фасады. Такие проблемы не возникают при использовании автоклавного газобетона, поскольку он набирает свою прочность еще в процессе производства. Для сравнения показатель усадки автоклавного газобетона составляет 0,5 мм/м, а вот неавтоклавного от 1 до 3 мм/м.

Точность производства

В процессе производства для неавтоклавных материалов опираются на показатели допустимых значений из старого ГОСТа в результате готовые строительные блоки имеют большое отличие в геометрических характеристиках. Для блоков из газобетона автоклавного твердения таких проблем не существует, поскольку все производство ведется по современному ГОСТу и расхождения в параметрах готовой продукции минимальны. В связи с большой погрешностью в геометрических размерах появляется ряд проблем при использовании неавтоклавного газобетона:

  • Увеличивается необходимое количество раствора и как следствие стоимость строительства.
  • Образуются мостики холода из-за толстых швов.
  • Выравнивание поверхности стен становится достаточно трудоемким процессом.

Теплоизоляция

Уровень теплоизоляции у обоих материалов очень хороший. Но можно рассмотреть этот вопрос со стороны эффективности использования разных материалов и затрат для достижения одинакового эффекта. На уровень теплоизоляции помимо прочих влияет такой показатель, как плотность материала. Чем выше уровень плотности, тем более низкие показатели теплоизоляции будут у строительных блоков. Например, для использования материала в качестве конструктивного, а уж тем более для несущих стен, требуется высокая прочность. Для достижения нужных показателей с использованием неавтоклавного газобетона необходима плотность как минимум 700 кг/м3. Это означает, что для качественной теплоизоляции толщина стены должна быть около 65 см. При тех же условиях, для достижения нужного уровня прочности можно использовать автоклавный газобетон с уровнем плотности 500 кг/м3 и толщина стены будет уже около 40 см.

Итоги

На первый взгляд при строительстве домов кажется очевидным преимуществе в цене не в пользу автоклавного газобетона. Но в итоге с учетом всех недостатков неавтоклавных материалов и суммы необходимой на их устранения и этот плюс сходит на нет. Автоклавный газобетон превосходит неавтоклавный практически по всем параметрам.

Как работает лабораторный автоклав?

Стерилизация паром — важный процесс, который выполняется в каждой лаборатории. В этой статье мы рассмотрим историю паровой стерилизации, принцип работы стерилизатора и новые тенденции в дизайне стерилизатора.

Содержание

Введение в паровую стерилизацию

Терминология

Термины паровой стерилизатор и автоклав являются синонимами и могут использоваться как синонимы.Тем не менее, автоклав часто используется в лабораторных условиях, а стерилизатор чаще используется в больницах или фармацевтических учреждениях.

Автоклавы используют тепло пара для уничтожения любых микробов, которые могут присутствовать на зараженной загрузке . Загрузка, также известная как товаров , считается стерильной после того, как она прошла полный цикл стерилизации . После того, как загрузка станет стерильной, ее можно использовать, не опасаясь занесения чужеродных микроорганизмов в чувствительную среду, такую ​​как лаборатория, операционная больницы, предприятие по производству пищевых продуктов и т. Д.Различные типы товаров необходимо стерилизовать в течение разного времени и при разных температурах. Некоторые автоклавы включают дополнительные функции, такие как функции вакуумирования, специальные циклы и встроенные электрические бойлеры.

История автоклава

Чарльз Чемберленд изобрел автоклав в 1879 году, но концепция использования пара в замкнутом пространстве для предотвращения болезней существует в той или иной форме с 1679 года.

Принципы и методы для стерилизация практически не изменилась за последние 150 лет.Фактически, большинство основных достижений в технологии автоклавов с 1879 года были связаны с мониторингом процесса стерилизации, безопасностью автоклавов и созданием цикла стерилизации, а не с внесением изменений в процесс стерилизации.

Почему Steam?

Чтобы убить клетку теплом, ее температура должна быть повышена до такой степени, при которой белки в клеточной стенке разрушаются и коагулируют. Пар — очень эффективная среда для передачи тепла, что делает его отличным способом уничтожения микробов. С другой стороны, воздух — очень неэффективный способ передачи тепла / энергии из-за концепции, известной как теплота испарения.

Для доведения одного литра воды до точки кипения (100C) требуется 80 килокалорий (ккал) тепловой энергии. Для преобразования этого литра воды в пар потребуется 540 ккал, а это значит, что пар при 100 ° C содержит в семь раз больше энергии, чем вода при 100 ° C.

Эта энергия делает пар намного более эффективным в уничтожении микроорганизмов.Когда пар сталкивается с более холодным объектом, он конденсируется в воду. Затем он передает всю энергию, которая была использована для кипячения воды, прямо в воду. Этот процесс нагревает клетки намного эффективнее, чем воздух при аналогичных температурах. Вот почему мы используем пар для достижения стерильности.

Что такое бесплодие?

У большинства людей есть рабочее понимание, что стерильные товары не содержат микроорганизмов и, следовательно, безопасны для использования в медицине, производстве пищевых продуктов, исследованиях или других условиях, в которых присутствие микробов может представлять значительную угрозу безопасности или вред.

Точное количество микроорганизмов, которые останутся живыми с течением времени при фиксированной температуре, выражается в виде вероятностной логарифмической кривой — функции, которая приближается, но никогда не достигает нуля (см. Рисунок 1).

Рисунок 1

Когда функция приближается к нулю, обычно выбирают уровень достоверности, называемый уровнем обеспечения стерильности (SAL), для вероятности того, что последний присутствующий микроорганизм выживет. Вопреки распространенному мнению, стерилизация не является бинарной, если что-то либо стерильно, либо нестерильно.Стерилизация — это статистическое событие, характеризующееся этим коэффициентом достоверности (SAL). Общий стандарт для SAL — 10-6, или один шанс на миллион выживания одного жизнеспособного микроорганизма. Продолжительность стерилизации зависит от заданной температуры и желаемого уровня SAL; более высокие температуры обеспечат стерильность быстрее.

Как работает автоклав?

Общий процесс

Будь то небольшой настольный агрегат или крупногабаритный агрегат размером с комнату, все автоклавы работают по принципам, аналогичным принципам обычной кухонной скороварки, то есть дверца закрывается, образуя герметичную камеру. и весь воздух в этой камере заменяется паром.Затем пар повышается под давлением, чтобы довести его до желаемой стерилизации в течение желаемой продолжительности. По завершении цикла пар выпускается, и товары могут быть удалены.

Для более подробного объяснения различных фаз цикла стерилизации, пожалуйста, обратитесь к списку и изображению (Рисунок 2), показанным ниже:

1. Фаза продувки: Пар проходит через стерилизатор и начинает вытеснять воздух. ; температура и давление слегка повышаются до непрерывной продувки.

2. Фаза выдержки (стерилизации): Во время этой фазы система управления автоклава запрограммирована на закрытие выпускного клапана, в результате чего внутренняя температура и давление повышаются до желаемой уставки. Затем программа поддерживает желаемую температуру (остается) до тех пор, пока не будет достигнуто желаемое время.

3. Выпускная фаза: Давление сбрасывается из камеры через выпускной клапан, и внутри восстанавливается давление окружающей среды (хотя содержимое остается относительно горячим).

Рисунок 2

Критические компоненты автоклава

Типичный лабораторный автоклав состоит из следующих компонентов (Рисунок 3):

Рисунок 3

1. Емкость

Емкость является основной корпус автоклава и состоит из внутренней камеры и внешней рубашки. Лабораторные и больничные автоклавы сконструированы с камерами с «рубашкой» (см. Рис. 4), где рубашка заполнена паром, что сокращает время, необходимое для завершения цикла стерилизации, и уменьшает конденсацию внутри камеры.Сосуд, спроектированный и изготовленный с полной рубашкой, превосходит сосуд с частичной рубашкой или рубашкой по следующим причинам: полная рубашка улучшает однородность температуры в камере, снижает вероятность образования мокрых пакетов и помогает минимизировать влажный пар, который не подходит для стерилизации. [

В США каждая емкость автоклава проверяется и маркируется паспортной табличкой Американского общества инженеров-механиков (ASME), на которой указан номер Национального совета. Производители должны провести гидростатические испытания каждого сосуда и наклеить паспортную табличку ASME перед вводом автоклава в эксплуатацию. Этот осмотр и паспортная табличка ASME являются ключевыми показателями исправного функционирования автоклава.

Сосуды для лабораторных и больничных автоклавов могут различаться по размеру от 100 л до 3 000 л и обычно изготавливаются из нержавеющей стали 316L. Внутренние камеры изготавливаются из нержавеющей стали 316L или никелированной, а внешние кожухи изготавливаются из нержавеющей стали 316L, 304L или углеродистой стали.

2.Система управления

Все современные автоклавы оснащены интерфейсом контроллера, мало чем отличающимся от того, что вы найдете в микроволновой печи или духовке. Тем не менее, системы управления автоклавами имеют тенденцию быть немного более сложными, чем системы управления бытовой техникой. Цикл стерилизации следует заранее запрограммированной формуле программного обеспечения, которая открывает и закрывает клапаны и другие компоненты в определенной последовательности. Поэтому для всех автоклавов требуется какая-либо система управления, будь то простая система «нажимных кнопок» с микропроцессором или такая сложная, как программируемый логический контроллер с цветным сенсорным экраном.

3. Термостатическая ловушка

Все автоклавы оснащены термостатической ловушкой или конденсатоотводчиком той или иной формы — устройством, предназначенным для выхода воздуха и воды (конденсата) из камеры. Хотя система подачи пара / паровой автоклав может использовать множество ловушек, все они выполняют одну и ту же основную функцию: удаление конденсата при одновременном предотвращении прохождения сухого пара. Чаще всего конденсатоотводчики представляют собой термочувствительные клапаны, которые закрываются при нагреве до определенного заданного значения.Термостатические ловушки — важный компонент любого хорошо спроектированного автоклава.

4. Предохранительный клапан

Все автоклавы работают под повышенным давлением (14–45 фунт-сила на квадратный дюйм манометра) и поэтому должны быть изготовлены с невероятно прочной конструкцией и оснащены рядом функций безопасности и устройств для обеспечения они не представляют опасности для пользователей. Одним из этих предохранительных устройств является предохранительный клапан, который является последним предохранительным устройством для резервуара высокого давления в случае выхода из строя всех электронных средств управления.Крайне важно, чтобы предохранительный клапан был осмотрен, испытан и подтвержден на предмет надлежащего рабочего состояния в соответствии с рекомендациями производителя стерилизатора и / или клапана, а также местных инспекционных и страховых агентств.

5. Механизм охлаждения сточной воды

Многие автоклавы оборудованы системой охлаждения сточных вод (воздуха, пара и конденсата) до их попадания в дренажный трубопровод. Многие муниципалитеты и здания не допускают попадания сточных вод с температурой выше 140 ° F в канализацию пола.Во избежание повреждения дренажного трубопровода установки пар необходимо охладить перед тем, как его можно будет отправить по вытяжке. Самый простой способ охлаждения этого пара — смешать его с дополнительной холодной водопроводной водой, но необходимое количество воды может привести к тому, что автоклав станет основным источником потребления воды зданием. Некоторые автоклавы оснащены системами, предназначенными для уменьшения или даже исключения потребления воды.

6. Вакуумная система (если применимо)

Для обеспечения надлежащей стерилизации жизненно важно, чтобы весь воздух внутри камеры автоклава был заменен паром.Некоторые обычно стерилизуемые товары — особенно пористые материалы, такие как подстилка для животных или ткань, или контейнеры с небольшими отверстиями, такие как фляги или товары в мешках, — имеют тенденцию удерживать воздушные карманы. Если во время цикла присутствует воздушный карман, любые микроорганизмы в этом кармане выживут, и товары не будут стерильными.

По этой причине многие стерилизаторы включают вакуумную систему. Это не только позволяет пользователю принудительно удалять воздух с помощью вакуума в камере перед циклом (известный как предварительный вакуум), но также позволяет им использовать вакуум после цикла (известный как пост-вакуум) для удаления любого пара. который остается в камере, и для сушки товаров внутри автоклава.

7. Парогенератор (если имеется)

Центральный «домашний» котел является наиболее распространенным источником пара для автоклава. Однако, если пар в доме недоступен или недостаточен для автоклава, необходимо прибегнуть к использованию электрического парогенератора, также известного как бойлер. Эти котлы обычно располагаются под камерой автоклава и используют электрические нагревательные элементы для нагрева воды и генерации пара.

Нужна помощь в выборе источника пара для автоклава? Проверьте это >>>

Рисунок 4

Чтобы узнать больше об автоклавах, посмотрите наше видео здесь:

Циклы стерилизации

Как правило, существует четыре стандартных цикла стерилизации: гравитационная , предварительный вакуум, жидкости и вспышка (также известное как немедленное использование).Таблица, показанная ниже, объясняет эти циклы более подробно.

Некоторые автоклавы также могут выполнять специальные циклы, предназначенные для предотвращения повреждения хрупких товаров, которые необходимо стерилизовать, но которые могут быть повреждены или разрушены быстрыми изменениями температуры и давления в нормальном цикле. Эти специальные циклы включают в себя гораздо более длительные циклы при более низких температурах, циклы паровоздушного смешения со специальными регуляторами давления, чтобы избежать разрушения герметичных пробирок, и циклы, в которых используется специальное оборудование для обеспечения полной температуры стерилизации.

Вот что вам нужно знать о циклах стерилизации паром >>>

Новые тенденции в автоклаве

Автоклавы могут считаться древними устройствами по стандартам современной науки, но это не означает, что автоклавам не хватает инноваций, особенно когда дело доходит до средства управления, возможность подключения к облаку и воздействие на окружающую среду.

Как упоминалось ранее, средства управления автоклавами значительно продвинулись в эпоху компьютеров, от ручного управления и простых таймеров до компьютерной автоматизации, которая сводит к минимуму или полностью устраняет необходимость во вводе данных пользователем. Компьютеризированные средства управления также привели к прогрессу в управлении данными, ведении записей и удаленном мониторинге с помощью мобильных устройств. Автоклавы с автоматическими принтерами, которые записывают данные с целью проверки успешной стерилизации, теперь заменены новыми автоклавами, которые подключаются к облаку для хранения записей цикла в Интернете.

Еще одна тенденция в конструкции автоклавов — экологичность. Автоклавы являются основным источником потребления воды и энергии как в лабораториях, так и в больницах; Признавая это, многие производители нашли инновационные способы уменьшения воздействия автоклавов на окружающую среду.Зеленые автоклавы, которые сокращают или даже полностью рециркулируют воду, потребляемую стерилизатором — в некоторых случаях от 1500 галлонов в день до менее одного галлона в день — имеют решающее значение для создания экологически чистой лаборатории. Системы управления, которые автоматически поворачивают автоклав, когда он не используется, также могут значительно снизить потребление энергии — в некоторых случаях с 80 киловатт-часов в день до 20 киловатт-часов в день.

Ваш надежный источник всего, что связано с автоклавом

Независимо от того, используете ли вы автоклав для стерилизации медицинского или лабораторного оборудования, важно, чтобы вы хорошо понимали процесс стерилизации — как он работает сегодня, так и как он меняется.

Задайте эти ключевые вопросы перед покупкой следующего автоклава >>>

Consolidated Sterilizer Systems имеет богатое наследие в индустрии паровой стерилизации с более чем 75-летним опытом. Мы стремимся к совершенству производства и стремимся предоставлять высококачественные, высокоэффективные решения для стерилизации и дистилляции. Если вы хотите узнать больше о процессе паровой стерилизации или у вас есть другие вопросы, связанные с автоклавом, свяжитесь с нами сегодня.

17 вопросов , которые следует задать перед покупкой следующего автоклава

Мы создали эту электронную книгу из 17 вопросов в качестве основы, которая поможет вам изучить и найти именно тот тип автоклава, который лучше всего подходит для ваших нужд.

Получить электронную книгу

Что такое автоклав и как он работает?

Вы, наверное, слышали термин «автоклав», но для чего нужен автоклав? Если вы относительно знакомы с автоклавами, вы, вероятно, думаете об их использовании только в одной конкретной области.Фактически, существует удивительное количество применений технологии автоклавов и множество вариантов повышения эффективности автоклавов.

Что такое автоклав?

Автоклавы — это большие сосуды, которые находятся под давлением и подвергаются высоким температурам. Обычно они имеют цилиндрическую форму, так как округлая форма лучше выдерживает высокое давление. Автоклавы предназначены для хранения предметов, которые помещаются внутрь, а затем закрывается крышка. Фактически, слова «авто» и «клаве» означают автоматическую блокировку.Из-за действующего давления предохранительные клапаны важны для обеспечения безопасного поддержания давления пара внутри. Автоклавы обычно используются для стерилизации оборудования и инструментов, но они имеют ряд применений.

Как работает автоклав?

После помещения предметов или материалов в автоклав крышка закрывается. Затем из сосуда удаляется большая часть воздуха. Есть два варианта, как это сделать. Установки гравитационного вытеснения удаляют воздух путем закачки пара в емкость.Пар вытесняет воздух, создавая вакуум. Другая конструкция, называемая предварительным вакуумом, удаляет воздух из емкости с помощью вакуумного насоса.

После удаления воздуха из сосуда в камеру закачивается пар под высоким давлением. Это вызывает повышение температуры. После достижения заданной температуры пар будет продолжать поступать в сосуд для поддержания заданной температуры.

Как стерилизует инструменты в автоклаве?

Медицинские инструменты и оборудование помещены в автоклав.Крышка закрывается, из автоклава удаляется воздух, а затем в емкость закачивается пар. Тепло и давление поддерживаются достаточно долго, чтобы убить микроорганизмы и бактерии и стерилизовать медицинские инструменты.

Насколько сильно нагревается автоклав?

Автоклавы

предназначены для самых разных целей. Например, медицинские автоклавы обычно нагреваются до 121–140 ° C (250–284 ° F) в течение как минимум 3 минут, но до 15-20 минут. Целевая температура и время, в течение которого поддерживается эта температура, зависят от нескольких факторов.

Эти факторы включают тип желаемого процесса, тип предметов внутри автоклава и то, сколько места остается для пара, чтобы свободно перемещаться вокруг предметов внутри автоклава. Промышленные автоклавы часто рассчитаны на поддержание температуры до 300 ° C, но некоторые специальные автоклавы могут достигать температуры 400 ° C и более.

Использует автоклав

Автоклавы датируются 1884 годом, когда они были изобретены Чарльзом Чемберлендом. Сегодня они остаются технологией выбора для стерилизации медицинского оборудования.Это функция, которая чаще всего приходит в голову, но автоклавы находят и другое применение.

Независимо от области применения принцип работы автоклава остается неизменным, но размер необходимого автоклава, а также заданная температура и давление зависят от того, как будут использоваться автоклавы.

Стерилизация медицинского оборудования

Совершенно очевидно, что любые повторно используемые медицинские инструменты должны быть должным образом очищены для уничтожения бактерий и других загрязняющих веществ. Это включает хирургическое оборудование, сосуды и любые другие предметы, которые могут контактировать с жидкостями организма или загрязнением из воздуха.

Больничный автоклав не подходит для обработки материалов, которые не выдерживают высоких температур, но больничные автоклавы используются для дезинфекции другого оборудования. Медицинский автоклав используется для хирургического оборудования, но медицинские автоклавы также используются для стерилизации инструментов и оборудования, используемых ветеринарами, гробовщиками, татуировщиками, дантистами и медицинскими лабораториями.

Лабораторное оборудование

Исследователям необходимо стерилизованное оборудование для нескольких процессов.Доступны специальные автоклавы исследовательского класса для использования в лабораторных условиях. Автоклавы исследовательского класса не одобрены для стерилизации предметов, которые будут использоваться непосредственно на людях, но лабораторные автоклавы спроектированы так, чтобы быть более экономичными в эксплуатации, чем автоклавы медицинского класса.

Полимерное отверждение

Полимерные композиты используются в различных отраслях промышленности. Автоклавы используются для отверждения полимеров, когда важно обеспечить постоянное отверждение полимерного материала, например, при производстве деталей и компонентов для аэрокосмической и судостроительной промышленности.

Вулканизация

Автоклавы используются при вулканизации резины, поскольку автоклавы обеспечивают регулируемое тепло и давление, необходимые для производства однородных высококачественных продуктов.

Синтетические кристаллы

Кристаллы широко используются в электронной промышленности. Автоклавы обеспечивают температуру и давление, необходимые для производства высококачественных кристаллов синтетического кварца.

Преимущества использования генератора азота для автоклавного отверждения полимеров

Первоначально в автоклавах использовался воздух, но азот стал предпочтительным газом для многих типов автоклавных процессов.Есть ряд причин для этого. Одним из основных факторов является доступность генераторов азота, которые экономично устанавливать на месте.

Генераторы азота, устанавливаемые на месте, обеспечивают недорогое производство, не требуя доставки резервуаров под давлением. Используя азот, а не окружающий воздух, можно получить более стабильные результаты, не беспокоясь о наличии легковоспламеняющегося кислорода.

Использование азота становится еще более важным для изделий, производимых при более высоких давлениях и высоких температурах.При такой температуре и давлении многие предметы могут стать легко воспламеняемыми. Использование инертного газа, такого как азот, становится жизненно важным из соображений безопасности. Пожар может не только уничтожить предметы внутри автоклава, но и повреждение автоклава может привести к значительным расходам и простоям на время завершения ремонта. Узнайте больше о преимуществах генератора азота для автоклавного отверждения полимеров.

Генераторы азота на месте стали более экономичными. Например, система генератора азота GENERON ® PSA может окупить себя за счет экономии средств всего за один год по сравнению с ценой покупки резервуаров с азотом.

Генераторы азота

обладают тем преимуществом, что являются непрерывным источником азота, способным удовлетворить потребности даже крупных промышленных операций по отверждению полимеров. Нет необходимости в простоях для замены резервуаров или организации доставки резервуаров. Использование выработки азота на месте не только более рентабельно, но и снижает воздействие на окружающую среду, устраняя необходимость доставки в резервуары. При надлежащем техническом обслуживании генераторы азота имеют средний срок службы 10 лет, что делает их отличным долгосрочным вложением.Свяжитесь с GENERON, чтобы узнать, какая система генератора азота PSA лучше всего подойдет для вашей компании.

Хотите узнать больше о доступных вариантах для генераторов азота? Свяжитесь с GENERON сегодня для получения дополнительной информации о продукте.

Разница между стерилизатором и автоклавом

Разница между стерилизатором и автоклавом

Сегодня мы живем в поистине глобальном мире. Через социальные сети, тексты и блоги люди могут узнать о последнем вирусе, который угрожает распространиться по всему миру, еще до того, как он коснется их собственной страны.Это привело к появлению общества, которое страстно относится к чистоте и хочет знать, как лучше всего защитить свои семьи от болезней. Они так же осторожно относятся к тому, как другие помогают сохранить их здоровье в кабинете врача, тату-салона или ветеринара.

Стерилизаторы и паровые стерилизаторы-автоклавы

когда-то ассоциировались только со школьниками и докторами, но теперь они привлекли внимание общественности. Даже если вы не используете стерилизаторы в своей профессии, может быть полезно знать, какие устройства используют ваши врачи, косметологи и даже мастера по маникюру, чтобы избежать передачи микробов от одного клиента к другому.

Разница между стерилизатором и автоклавом

Хотя многие говорят, что стерилизаторы и автоклавы являются синонимами, они больше похожи на стерилизаторы для деревьев — это ствол, из которого отходят автоклавы. Стерилизатор — это общий термин для любого оборудования, которое можно стерилизовать.

Автоклав-стерилизатор — это специальное устройство, которое стерилизует оборудование. Название представляет собой комбинацию двух древних слов: авто, что по-гречески означает «я», и clave, что по-латыни означает ключ.В сочетании эти два слова означают «самоблокирующийся».

Одной из особенностей паровых автоклавов среди других стерилизаторов является функция автоматической блокировки. Поскольку автоклав является стерилизатором, его цель аналогична стерилизатору — убить или удалить все формы жизни на поверхности объекта, такие как бактерии, грибки, вирусы и споры. В то время как автоклавы используют только пар для дезинфекции, стерилизаторы могут использовать химические вещества, высокое давление, фильтрацию, раздражение или комбинацию этих методов для уничтожения живых организмов.

Не все стерилизаторы могут быть автоклавными стерилизаторами, потому что не каждое устройство может выдерживать высокие температуры, необходимые для уничтожения всех организмов. Если кто-то будет использовать другое оборудование, материал может расплавиться и трансформироваться, что сделает его непригодным для использования.

Следующим шагом в понимании стерилизаторов является понимание различных процессов стерилизации. В Duraline BioSystems мы предлагаем различные типы новых стерилизаторов и отремонтированных стерилизаторов, таких как Ritter Midmark Ultraclave, чтобы удовлетворить все ваши потребности, закажите их сегодня!

Как работает автоклав?

Как работает автоклав? — Объясни это

Рекламное объявление

Криса Вудфорда.Последнее изменение: 24 июня 2020 г.

Радуйтесь, радуйтесь, что ваши глаза не так сильны, как
электронные микроскопы. Если бы они были, вы бы увидели мир вокруг себя
ползать со всевозможными жуткими ошибками. Какой мерзкой и мерзкой могла бы казаться жизнь! Так же хорошо, что мы
есть автоклавы: машины для стерилизации вещей
и сохраняя их свободными от микробов. Они немного похожи на гигантское давление
плиты, которые используют силу пара для уничтожения микробов, которые могут
выдерживают простую стирку или протирание горячей водой с моющими средствами.Они просты в использовании, подходят для оптовой стерилизации (большое количество оборудования), а поскольку в них используется пар,
относительно экономичны в эксплуатации. Давайте подробнее разберемся, что это такое и как работают!

Фото: Заглядывает в открытую дверь большого автоклава. Обратите внимание на уплотнительную прокладку на дверце, чтобы пар оставался внутри, а манометры сверху. Фото Кэрол М. Хайсмит любезно предоставлено Коллекцией фотографий Джорджа Ф. Ландеггера из Алабамы в Америке Кэрол М. Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.

Для чего нужен автоклав?

Фото: Тестирование автоклава для стерилизации паром перед использованием. Это Hanshin HS-4085G с микропроцессорным управлением, который может стерилизовать грузы объемом до 85,6 л (22,6 галлона) при температуре до 135 ° C (275 ° F).
Фото Роаделла Хикмана любезно предоставлено ВМС США.

Хотя автоклавы имеют много важных научных и промышленных применений, о которых мы поговорим позже, основное внимание в этой статье будет уделено тому, как эти удобные машины используются для стерилизации .

Вы, наверное, слышали о скороварках? Они были в моде, пока в 1980-х годах не стали популярными микроволновые печи. Они похожи на кастрюли большого размера с плотно закрывающимися крышками, и, когда вы наполняете их водой, они производят много пара под высоким давлением, что ускоряет приготовление пищи (если вы хотите узнать больше, см. Рамку на внизу этой страницы). Автоклавы работают аналогичным образом, но обычно они используются
в более экстремальной форме приготовления: чтобы уничтожить насекомых и микробы
вещи с паром достаточно долго, чтобы их стерилизовать.Дополнительный
давление в автоклаве означает, что вода закипает при температуре выше, чем
его нормальная температура кипения — примерно на 20 ° C выше — поэтому он выдерживает и
переносит больше тепла и более эффективно убивает микробы. Продолжительный взрыв высокого давления
пар намного эффективнее проникает в предметы и стерилизует их
чем быстрое мытье или протирание в обычной горячей воде с дезинфицирующим средством.
Согласно недавнему обзору ученых из Новой Зеландии: «Стерилизация паром (автоклавирование) — наиболее широко используемый метод стерилизации и считается самым надежным и экономичным методом стерилизации медицинских устройств.«

Почему в автоклаве важно давление?

Давление — это способ действия силы на поверхность. Если вы качаете воздух
в велосипедную шину, энергичные молекулы газа
носиться внутри, сталкиваясь со стенками шины и давя наружу. Шина остается
упругий и надутый, потому что молекулы воздуха толкают его внутренние стенки с такой же силой
(или большая) сила, чем молекулы воздуха снаружи, толкают внешние стены. Если вы нагреете
покрышка, вы даете молекулам воздуха больше энергии.Они быстрее носятся,
чаще сталкиваются с резиновыми стенками шины и
больше силы. Шина кажется более накачанной или, если вам не повезло,
всплески!

В физике мы говорим, что давление на поверхность — это сила
давление на него, разделенное на площадь, на которую действует сила:

Давление = Сила / Площадь

Это простое уравнение говорит вам, что если вы приложите заданную силу к половине площади, вы удвоите давление. Приложите силу к удвоенной площади, и вы уменьшите давление вдвое.

Фото: Кнопки для рисования используют науку давления. Разница в площади между
голова, которую вы толкаете, и острый конец, входящий в стену, эффективно увеличивают силу толчка.

Очень полезно знать о давлении в повседневной жизни. Предполагать
вы хотите повесить плакат на стене спальни. Предполагая, что вы этого не сделаете
есть молоток, вам будет намного проще использовать канцелярские кнопки (канцелярские кнопки), чем
гвозди. У канцелярской кнопки огромная плоская головка соединена с очень тонкой
булавка с острым концом.Когда вы нажимаете на плоскую головку, вы наносите
определенное количество силы на довольно большую площадь. Сила
передается прямо через штифт на наконечник, где теперь действует на
площадь металла может быть в 100 раз меньше. Так что давление на
наконечник фактически в 100 раз больше — вот почему штифт входит
твоя стена так легко. В снегоступах и тракторных шинах используются абсолютно одинаковые
принцип только наоборот. Они распределяют вес (силу тяжести) на большую площадь, чтобы
не позволяйте своему телу (или машине) погрузиться в мягкий грунт.

Как давление и температура влияют на кипение

Предположим, у вас есть кастрюля полная картошки, которую вы хотите
готовить. Вы наполняете кастрюлю водой, ставите на горячую плиту и ждете
чтобы вода закипела. Теперь вы, наверное, думаете, что вода закипит
«когда достаточно жарко» — и это правда, но только наполовину.
Вода закипит, когда большинство содержащихся в ней молекул
энергии достаточно, чтобы выйти из жидкости и образовать над ней водяной пар (пар).
Чем горячее вода, тем более энергичны молекулы и тем легче им ускользнуть.Таким образом, температура играет важную роль в закипании.

Но давление тоже важно. Чем выше давление воздуха
над водой молекулам труднее вырваться на свободу;
чем ниже давление, тем легче.
Если вы когда-нибудь пробовали заварить чашку чая на горе с
портативная походная печь, вы знаете, что вода закипает при более низком
температура на большой высоте. Это потому, что давление воздуха падает
выше вы идете. На вершине Эвереста давление воздуха около
треть того, что было бы на уровне моря, поэтому вода кипит примерно при
70 ° C или 158 ° F (узнайте, почему, в этой публикации на форуме MadSci).Чай с вершины горы имеет отвратительный вкус, потому что вода кипит
при слишком низкой температуре: хоть он и кипит,
вода слишком холодная, чтобы как следует «сварить» заварку.

Узнайте больше о давлении, температуре и поведении молекул при кипении жидкости.

Рекламные ссылки

Как работает автоклав?

Фото: Закрытие дверцы типичного лабораторного автоклава. Обратите внимание на большую ручку справа.
используется для полной герметизации двери.Также обратите внимание на циферблаты с правой стороны.
которые указывают температуру и давление. Фото PHAA Sarna любезно предоставлено ВМС США.

Автоклав — это, по сути, просто большой стальной сосуд, проходящий через
какой пар или другой газ циркулирует, чтобы стерилизовать вещи, выполнять научные
экспериментирует или проводят производственные процессы. Обычно камеры в автоклавах
имеют цилиндрическую форму, потому что цилиндры лучше выдерживают
крайнее давление, чем коробки, края которых становятся точками
слабость, которая может сломаться.Высокое давление делает
их самоуплотняющиеся (слова «авто» и «клаве» означают
автоматическая блокировка), хотя по соображениям безопасности большинство из них также запечатаны вручную от
за пределами. Как и на скороварке, предохранительный клапан
гарантирует, что давление пара не может подняться до опасного уровня.

Как пользоваться автоклавом?

Изображение: Как работает автоклав (упрощенно): (1) Пар проходит через трубу внизу и вокруг закрытой рубашки, окружающей основную камеру (2), прежде чем попасть в саму камеру (3).Пар стерилизует все, что было помещено внутрь (в данном случае три синих бочки) (4), прежде чем выйти через выхлопную трубу внизу (5). Герметичный дверной замок и прокладка (6) надежно удерживают пар внутри. Предохранительный клапан (7), аналогичный тем, что установлен на скороварке, выскочит, если давление станет слишком высоким.

После герметизации камеры из нее удаляется весь воздух.
с помощью простого вакуумного насоса (в конструкции, называемой
предварительный вакуум) или откачкой
в паре, чтобы вытеснить воздух (альтернативный вариант, называемый
гравитационное смещение).Далее через камеру прокачивают пар на
более высокое давление, чем нормальное атмосферное давление, поэтому оно достигает температуры около
121–140 ° C (250–284 ° F). Как только необходимая температура будет достигнута,
срабатывает термостат и запускает таймер. Подача пара продолжается.
минимум около 3 минут и максимум около 15-20 минут
(более высокие температуры означают более короткое время) — обычно достаточно долго, чтобы
убивают большинство микроорганизмов. Точное время стерилизации зависит от
множество факторов, включая вероятный уровень загрязнения
автоклавированные предметы (грязные предметы, о которых известно, что они
требуется больше времени для стерилизации, потому что они содержат больше микробов) и как
автоклав загружен (если пар может циркулировать более свободно,
автоклавирование будет быстрее и эффективнее).

Автоклавирование немного похоже на приготовление пищи, но это не только наблюдение.
от температуры и времени, давление тоже имеет значение!
Безопасность превыше всего. Поскольку вы используете высокое давление,
высокотемпературный пар, будьте особенно осторожны при
открыть автоклав, чтобы не происходило внезапного сброса давления,
может вызвать опасный паровой взрыв.

Автоклавы промышленные и научные

Фото: Автоклавирование в научных целях: инженеры ВМС США загружают в автоклав кусок алюминия для нагрева и приклеивают к нему композитный пластырь.Фото Джонатана Л. Корреа любезно предоставлено ВМС США.

Artwork: Простой промышленный автоклав начала 20 века, предназначенный для производства различных промышленных химикатов с использованием кислот. По сути, это усиленный кислотостойкий кухонный сосуд (синий) со съемной завинчивающейся крышкой (оранжевый). Вы можете добавить химические ингредиенты через меньшее резьбовое входное отверстие (зеленое) и перемешать их с помощью мешалки с шестеренчатым приводом (красная). Это больше похоже на современную скороварку, чем на автоклав.Из патента США 1426920: Автоклав, Оливер Слипер, 22 августа 1922 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Автоклавы, наиболее известные как стерилизаторы, также могут использоваться для
проводить всевозможные промышленные процессы и научные эксперименты, которые лучше всего работают при высоких температурах
и давления. В отличие от стерилизующих автоклавов, в которых обычно циркулирует пар, промышленные и научные автоклавы
могут распространять другие газы, чтобы стимулировать протекание определенных химических реакций.Промышленные автоклавы часто используются для «отверждения» материалов (нагревания для стимулирования образования длинноцепочечных полимерных молекул). Например:

  • Резину можно вулканизировать (нагреть, упрочнить и упрочнить серой) в автоклаве.
  • Нейлон (пластик) можно получить путем «варки» концентрированного раствора соли в автоклаве для стимулирования так называемой конденсационной полимеризации.
  • Полиэтилен (полиэтилен, другой пластик) можно получить путем циркуляции воздуха или органических пероксидов через автоклав для полимеризации этилена.
  • Материалы для самолетов, изготовленные из композитов, также обычно отверждаются в больших промышленных автоклавах.
    (хотя различные альтернативные процессы, включая микроволновое отверждение и производство вне автоклава, становятся все более популярными).

В некоторых автоклавах сочетаются элементы как стерилизации, так и промышленного производства. Например, пробки для бутылок из натуральной пробки (деревянные) необходимо прокипятить и стерилизовать, прежде чем они станут пригодными для использования. Традиционно это делалось в больших резервуарах для воды; теперь это гораздо более вероятно, будет сделано в больших масштабах в промышленных автоклавах с компьютерным управлением.

Кто изобрел автоклавы?

Фото: Автоклав для научных исследований: осмотр кристалла, выращенного в условиях микрогравитации, внутри цилиндрического автоклава. Этот научный эксперимент был проведен на борту космического корабля «Шаттл» в октябре 1995 года. Фото любезно предоставлено Центром космических полетов НАСА им. Маршалла (NASA-MSFC).

  • Древние греки стерилизовали медицинские инструменты кипятком.
  • 1679: французский инженер Дени Папен (1647–1712) изобретает
    пароварка — важный шаг в развитии
    Паровые двигатели.
  • 1860-е годы: французский биолог Луи Пастер (1822–1895) помогает
    подтвердить микробную теорию болезни. Он понимает, что греющие вещи
    убивать микробы может предотвратить болезни и продлить срок службы пищевых продуктов
    (что привело его к изобретению пастеризации).
  • 1879: сотрудник Пастера Чарльз Чемберленд (1851–1908)
    изобретает современный автоклав. Похоже на скороварку с крышкой.
    сверху плотно заклеен зажимами.
  • 1881: микробиолог
    Роберт Кох и другие критикуют паровой метод Чемберленда, который, по их мнению, может повредить лабораторное оборудование, и вместо этого разрабатывают альтернативный стерилизатор без давления.В конечном итоге это превращается в машину, называемую
    Автоклав Коха.
  • 1889: немецкий врач
    Курт Шиммельбуш опирается на
    работа Чемберленда и Коха по производству стерилизатора барабанного типа, известного как автоклав Шиммельбуш (стерилизационный барабан).

В чем разница между автоклавом и скороваркой?

Хотите приготовить ужин быстрее? Вы могли бы использовать
микроволновая печь, чтобы поразить его энергичными волнами. Но еще один популярный
решение заключается в том, чтобы запечатать его в скороварке: своего рода кастрюле, которая
готовит продукты быстрее, кипятя их при более высокой температуре, чем
обычный.Хотя некоторые считают скороварки устаревшими, они по-прежнему являются удобным и экономичным способом приготовления.
еда. Основная концепция — использование давления для достижения более высокой температуры — та же
как в автоклаве.

Фото: Скороварка в действии. Обратите внимание на клапан наверху, через который выходит пар, и на двойную ручку, используемую для блокировки крышки. Фото Джорджа Данора, Управление военного управления США, любезно предоставлено Библиотекой Конгресса США.

Мы уже видели, что высокое давление повышает температуру кипения воды. Предположим, мы могли бы как-то устроить так, чтобы воздух над нашим
кастрюля находилась под гораздо более высоким давлением, чем обычно. Что
заставит воду закипеть при значительно более высокой температуре,
благодаря чему картофель готовится быстрее.

Это основная идея скороварок. Скороварка
представляет собой большую стальную кастрюлю с плотно закрывающейся крышкой. Внешний край
на крышке есть толстый круг из резины, называемый прокладкой, которая подходит
между нижней частью крышки и верхней частью сковороды, чтобы
герметичное уплотнение.

Когда вы наполняете кастрюлю водой и ставите ее на
плита, вода нагревается, и некоторые из ее молекул улетучиваются, образуя
пар над ним. На обычной сковороде пар просто улетучится.
на кухню и исчезни. Но с скороваркой
прокладка и крышка предотвращают выход пара, поэтому давление скоро возрастет.
Хотя вода внутри кастрюли закипает, чем выше давление, тем выше она закипает.
температуры, чем обычно, что позволяет приготовить пищу быстрее. Специальный
клапан в верхней части крышки позволяет выходить небольшому количеству пара,
поддерживая давление выше, чем обычно, но не настолько, чтобы
плита взрывается.Если давление внутри поддона становится слишком сильным, клапан выскакивает, быстро понижая давление до безопасного уровня.

Рекламные ссылки

Узнать больше

На сайте

Книги

Статьи

Популярное
  • Внутри аэрокосмической фабрики будущего от Джона Экселла. Инженер, 17 июня 2014 года. Автоклавы играют важную роль в производстве самолетов, но, возможно, не будут так долго работать.
  • Солнечная энергия: альтернативное устройство для стерилизации хирургических инструментов в сельской местности Дональд Г.Макнил младший. Нью-Йорк Таймс. 12 ноября 2012 г. Автоклавы на солнечных батареях могут принести огромную пользу сельским районам Африки.
  • Геометрии | Автоклав на острове Эллис: The New York Times, 9 апреля 2008 г. Захватывающий фотографический взгляд на то, как автоклав стерилизовал вещи больных, потенциальных иммигрантов.
  • Мгновенный пар может изгнать MRSA: BBC News, 29 июля 2007 г. Перегретый пар из ручного «пистолета» может быть альтернативой автоклавированию.
  • Микроб побил температурный рекорд Хелен Бриггс.BBC News, 15 августа 2003 г. Почему микроб из океанов может выдержать высокотемпературное автоклавирование.
  • Медицинская стерилизация «может распространять CJD»: BBC News, 10 февраля 1999 г. Исследователи сомневаются, достаточно ли простого автоклавирования для уничтожения прионов (белков), вызывающих болезнь Крейтцфельда-Якоба.
Научные журналы

Патенты

Чтобы получить более подробные технические сведения, попробуйте этот небольшой набор из множества запатентованных конструкций автоклавов:

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2008, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис.(2008/2020) Автоклавы. Получено с https://www.explainthatstuff.com/autoclaves.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Обзор автоклава

Последнее обновление: 31 октября 2016 г., 9:45:31 PDT

Узнайте о назначении и ограничениях автоклавов, типах циклов и процедурах безопасного и эффективного автоклавирования.

Назначение

Автоклавирование, иногда называемое стерилизацией паром, представляет собой использование пара под давлением для уничтожения инфекционных агентов и денатурирования белков. Этот вид «влажного тепла» считается наиболее надежным методом стерилизации лабораторного оборудования и обеззараживания биологически опасных отходов.

Другие методы обеззараживания — сухое тепло, ультрафиолетовое или ионизирующее излучение, а также дезинфекция жидкостью, газом или паром — не являются подходящей заменой автоклавирования или сжигания перед утилизацией биологически опасных материалов.Автоклавы не удаляют химические загрязнения.

Рабочие процедуры

При правильном использовании автоклавы безопасны и очень эффективны. В автоклавах используется насыщенный пар под давлением примерно 15 фунтов на квадратный дюйм для достижения температуры камеры не менее 250 ° F (121 ° C) в течение заданного времени — обычно 30–60 минут.

В дополнение к правильной температуре и времени, предотвращение захвата воздуха имеет решающее значение для достижения стерильности. Стерилизуемый материал должен контактировать с паром и теплом.

Использование автоклава требует осторожности и соблюдения строгих нормативных и эксплуатационных требований. Для рабочих процедур читать:

Циклы автоклава

Есть 2 основных цикла автоклавирования:

  • Гравитация или «быстрый выхлоп»
  • Жидкость или «медленный выхлоп»

Оба цикла и материалы, подходящие для каждого цикла, описаны ниже.

Цикл

Материалы

Описание

Гравитация или «быстрый выхлоп»

Галантерея, посуда и т. Д. Этот цикл заряжает камеру паром и поддерживает ее при заданном давлении и температуре в течение заданного периода времени. В конце цикла открывается клапан, и камера быстро возвращается к атмосферному давлению. К циклу также можно добавить время высыхания.

Жидкость или «медленный выхлоп»

Жидкости Этот цикл предотвращает кипение стерилизованных жидкостей. В конце цикла пар медленно выпускается, позволяя жидкости (которая будет перегрета) остыть.

Контроль стерильности

Химический индикатор (например, автоклавная лента) должен использоваться с каждой загрузкой, помещенной в автоклав. Однако использование только автоклавной ленты не является адекватным средством контроля эффективности. Мониторинг стерильности в автоклаве должен проводиться не реже одного раза в месяц с использованием соответствующих биологических индикаторов (полоски со спорами Bacillus stearothermophilus), размещенных в разных местах автоклава.

Споры, которые могут выжить при 250 ° F в течение 5 минут, но погибают при 250 ° F за 13 минут, более устойчивы к нагреванию, чем большинство из них, тем самым обеспечивая достаточный запас безопасности при валидации процедур дезактивации.Каждый тип используемого контейнера должен быть протестирован на споры, поскольку эффективность зависит от загрузки, объема жидкости и т. Д.

Помогите UCSD выйти вперед!

Индикаторная лента для автоклавов некоторых марок может содержать свинец. Узнайте больше о возможных высоких уровнях содержания свинца в ленте автоклава, о том, как правильно утилизировать его, и о бессвинцовых альтернативах.

Уведомление: Удаление опасных отходов через раковины, преднамеренное испарение или как обычный мусор является нарушением закона.Лаборатории кампуса должны соблюдать строгие государственные и федеральные требования по утилизации отходов. Вы можете быть привлечены к ответственности за нарушение действующего законодательства.

Паровая стерилизация | Рекомендации по дезинфекции и стерилизации | Библиотека руководств | Инфекционный контроль

Основной принцип паровой стерилизации, выполняемой в автоклаве, заключается в том, чтобы подвергать каждый предмет прямому контакту с паром при требуемой температуре и давлении в течение определенного времени. Таким образом, существует четыре параметра стерилизации паром: пар, давление, температура и время.Идеальный пар для стерилизации — сухой насыщенный пар и увлеченная вода (доля сухости ≥97%). 813, 819 Давление служит средством достижения высоких температур, необходимых для быстрого уничтожения микроорганизмов. Для обеспечения микробицидной активности необходимо обеспечить определенную температуру. Две распространенные температуры стерилизации паром: 121 ° C (250 ° F) и 132 ° C (270 ° F). Эти температуры (и другие высокие температуры) 830 должны поддерживаться в течение минимального времени, чтобы убить микроорганизмы.Признанные минимальные периоды воздействия для стерилизации упакованных медицинских принадлежностей составляют 30 минут при 121 ° C (250 ° F) в стерилизаторе с гравитационным вытеснением или 4 минуты при 132 ° C (270 ° F) в предварительном вакуумном стерилизаторе (Таблица 7). При постоянных температурах время стерилизации зависит от типа предмета (например, металл или резина, пластик, предметы с просветом), от того, упакован он или нет, а также от типа стерилизатора.

Два основных типа паровых стерилизаторов (автоклавов) — автоклав с гравитационным вытеснением и высокоскоростной предварительный вакуумный стерилизатор.В первом случае пар поступает в верхнюю или боковые части стерилизационной камеры и, поскольку пар легче воздуха, вытесняет воздух из нижней части камеры через дренажное отверстие. Автоклавы с гравитационным вытеснением в основном используются для обработки лабораторных сред, воды, фармацевтических продуктов, регулируемых медицинских отходов и непористых изделий, поверхности которых имеют прямой контакт с паром. Для стерилизаторов с гравитационным вытеснением время проникновения в пористые предметы увеличивается из-за неполного удаления воздуха.Этот момент иллюстрируется обеззараживанием 10 фунтов микробиологических отходов, для чего требуется не менее 45 минут при 121 ° C, потому что захваченный воздух, остающийся в загрузке отходов, значительно замедляет проникновение пара и эффективность нагрева. 831, 832 Высокоскоростные предвакуумные стерилизаторы аналогичны стерилизаторам с гравитационным вытеснением, за исключением того, что они оснащены вакуумным насосом (или эжектором) для удаления воздуха из стерилизационной камеры и загрузки до того, как пар будет впущен. Преимущество использования вакуумного насоса заключается в том, что пар почти мгновенно проникает даже в пористые грузы.Тест Боуи-Дика используется для обнаружения утечек и недостаточного удаления воздуха и состоит из сложенных хирургических полотенец из 100% хлопка, которые являются чистыми и предварительно кондиционированными. В центр упаковки следует поместить имеющийся в продаже тестовый лист типа Боуи-Дика. Тестовую упаковку следует поместить горизонтально в переднюю нижнюю часть стойки стерилизатора, рядом с дверцей и над сливом, в противном случае пустую камеру и прогреть при 134 ° C в течение 3,5 минут. 813, 819 Испытание проводится каждый день использования парового стерилизатора вакуумного типа перед первой обработанной загрузкой.Воздух, который не удален из камеры, будет мешать контакту с паром. Для замены стопки сложенных хирургических полотенец для проверки эффективности вакуумной системы в предвакуумном стерилизаторе были разработаны одноразовые тестовые пакеты меньшего размера (или устройства для испытаний). 833 Эти устройства «предназначены для имитации продукта, подлежащего стерилизации, и представляют определенную проблему для процесса стерилизации». 819, 834 Они должны быть репрезентативными для нагрузки и имитировать наибольшую нагрузку на нее. 835 Работа вакуума стерилизатора приемлема, если лист внутри тестовой упаковки показывает равномерное изменение цвета. Захваченный воздух приведет к появлению пятна на тестовом листе из-за неспособности пара достичь химического индикатора. Если стерилизатор не прошел тест Боуи-Дика, не используйте стерилизатор до тех пор, пока он не будет проверен персоналом по обслуживанию стерилизатора и не пройдет тест Боуи-Дика. 813, 819, 836

Другой способ стерилизации паром — это процесс с импульсным давлением продувки паром, при котором воздух быстро удаляется путем многократного чередования продувки паром и импульса давления выше атмосферного.Воздух быстро удаляется из загрузки, как в предвакуумном стерилизаторе, но утечки воздуха не влияют на этот процесс, потому что пар в стерилизационной камере всегда находится выше атмосферного давления. Типичные температуры и время стерилизации составляют от 132 ° C до 135 ° C с временем воздействия от 3 до 4 минут для пористых материалов и инструментов. 827, 837

Как и другие системы стерилизации, паровой цикл контролируется механическими, химическими и биологическими мониторами. Паровые стерилизаторы обычно контролируются с помощью распечатки (или графически) путем измерения температуры, времени при температуре и давления.Обычно химические индикаторы прикрепляются снаружи и встраиваются в упаковку для контроля температуры или времени и температуры. Эффективность стерилизации паром контролируется с помощью биологического индикатора, содержащего споры Geobacillus stearothermophilus (ранее Bacillus stearothermophilus ) . Положительные результаты теста на споры — относительно редкое событие 838 и могут быть связаны с ошибкой оператора, недостаточной подачей пара, 839 или неисправностью оборудования.

Переносные (настольные) паровые стерилизаторы используются в амбулаторных, стоматологических и сельских клиниках. 840 Эти стерилизаторы предназначены для небольших инструментов, таких как шприцы для подкожных инъекций, иглы и стоматологические инструменты. Способность стерилизатора достигать физических параметров, необходимых для достижения стерилизации, следует контролировать с помощью механических, химических и биологических индикаторов.

Все о мешках для автоклавов — типы, отрасли и критерии выбора

Автоклавирование — это метод стерилизации паром.Пакеты для автоклава используются для стерилизации при высоких температурах, чтобы предотвратить прилипание низкотемпературных пластмасс внутри пакета автоклава к стенкам стерилизатора или блокирование вентиляционного трубопровода стерилизатора. Автоклавы работают с паром, давлением и временем. Они используются при высоких температурах и давлениях для уничтожения микроорганизмов и спор. Они используются для обеззараживания биологических отходов и стерилизации сред, инструментов и лабораторного оборудования. Регулируемые медицинские отходы, которые потенциально содержат бактерии, вирусы и другие органические материалы, перед утилизацией рекомендуется дезактивировать автоклавированием.

Мешок для автоклава является одним из многих принадлежностей автоклава, наряду с лентами, лотками, корзинами, очистителями камеры, индикаторными полосками и вкладышами лотков. В этой статье объясняется, как работает автоклавирование, как используются мешки, а также типы мешков, в каких отраслях промышленности используется автоклавирование и что следует учитывать при выборе мешка для автоклава.

Как работает автоклавирование?

Автоклав создает различные модели высокой температуры, вакуума и давления для стерилизации своего груза.Тип стерилизуемых материалов определяет тип используемых стерилизационных «циклов». Основными типами прогонов являются «жидкости», используемые для любых растворов на водной основе, «сухие продукты с вакуумом» и «сухие продукты без вакуума». Автоклавы часто имеют дополнительный «цикл сушки», в котором горячий воздух продувается через камеру для сушки предметов перед их удалением. Эти настройки управления, конечно, могут быть разными для разных марок автоклава.

Режим «Жидкости» длиннее, чем в двух других режимах, и работает при более низких температурах, чтобы уменьшить испарение стерилизуемых жидкостей.Уплотнения на емкостях должны быть неплотными, чтобы при расширении паров в процессе нагрева емкость не взорвалась. Легковоспламеняющиеся или летучие жидкости нельзя автоклавировать.

Процесс «сухих продуктов с вакуумом» перемещает пар и тепло в самые глубокие части больших пакетов автоклава и создает наилучшие условия для уничтожения стойких организмов. Во время этого процесса камера переключается между циклами вакуума и высокого давления. Затем в камере в течение длительного периода создается давление пара, за которым следует короткий цикл вакуумирования.Пар и давление должны быть в состоянии достичь всей загрузки, поэтому крышки мешков автоклава должны быть ослаблены, как только они окажутся в автоклаве.

В процессе «сухие продукты без вакуума» в камере создается давление пара на протяжении всего цикла, прежде чем вернуться в нормальное состояние. Этот процесс используется в основном для материалов, которые были очищены, но все еще нуждаются в стерилизации. Материалы следует упаковывать в мешки, чтобы тепло и давление могли достигать всего груза.

Типы пакетов для автоклавов

Тип используемого автоклавируемого мешка зависит от типа автоклава, который иногда называют стерилизатором.Существует пять типов автоклавов, для каждого из которых требуются пакеты определенного типа. Самотечный пар использует полиэтиленовые или полипропиленовые мешки. В паровых автоклавах высокого вакуума используются полипропиленовые мешки. Для газовых автоклавов ETO требуются полиэтиленовые или полипропиленовые мешки. Автоклав химический, мешки полипропиленовые. Нейлоновые мешки используются в автоклавах сухого нагрева. Пакеты из полиэтилена высокой плотности или полипропилена используются в паровых стерилизаторах гравитационного типа, поскольку достигаемые температуры превышают 250 градусов по Фаренгейту. Полипропиленовые пакеты используются только в паровых стерилизаторах высокого вакуума и стерилизаторах химического давления пара, поскольку эти стерилизаторы достигают температуры 285 градусов по Фаренгейту.Нейлоновые пакеты используются в стерилизаторах сухого тепла, потому что эти стерилизаторы нагреваются до 320 градусов по Фаренгейту.

Следующие пакеты рекомендуются для автоклавирования инфекционных материалов: прозрачные или оранжевые полиэтиленовые пластиковые пакеты, которые являются прочными, гибкими, свинцовыми и устойчивыми к проколам. Также рекомендуется использовать хорошо видимый символ биологической опасности, который затемняется, чтобы показать правильную температуру автоклавирования.

Отрасли, в которых используются автоклавы

Автоклавы

популярны в медицинской промышленности.Большинство научно-исследовательских лабораторий университетских городков требуют использования автоклавов. Любая промышленность, которая использует биологические или органические материалы, может использовать автоклав. Поскольку медицинские учреждения должны принимать несколько мер предосторожности, чтобы обеспечить чистоту и стерилизацию помещения и любого используемого оборудования, автоклавы — идеальная машина. Такие предметы, как хирургические инструменты и стеклянная посуда, должны быть полностью стерилизованы.

В салонах тату и пирсинге действуют нормы и стандарты здравоохранения, которым необходимо соответствовать, и для их выполнения часто используются автоклавы.Поскольку и для татуировок, и для пирсинга используются иглы, которые проникают в кожу, поэтому использование автоклавного стерилизатора для татуировки имеет решающее значение. Иглы, зажимы, украшения и любые другие инструменты очищаются в автоклаве. Автоклавный стерилизатор часто используется для предотвращения распространения инфекций или заболеваний, передающихся через кровь.

Автоклавы

могут стерилизовать несколько инструментов за один цикл, что делает их ценными в таких быстро развивающихся отраслях, как медицина и модификация тела. Использование автоклавов делает как процедуры, так и продукты более безопасными как для учреждения, так и для пациента или клиента.

Критерии выбора мешка для автоклава

Большинство пакетов, помеченных как автоклавируемые, не подходят, если они полностью закрыты, потому что пар не проникает в пакет для стерилизации материалов внутри. Паронепроницаемые пакеты необходимо оставлять частично открытыми или в их верхних частях должны быть проделаны отверстия для проникновения пара.

Пакеты для автоклавов с напечатанным предупреждением о том, что они должны оставаться открытыми во время стерилизации, никогда не должны закрываться. Если в пакете остался воздух, возможно, продукт нельзя стерилизовать должным образом.Пакеты для автоклавов, пропускающие пар, склонны плавиться или крошиться в процессе стерилизации. Автоклавируемые пакеты также могут протекать, поэтому их следует поместить в неглубокий металлический поддон.

Важно знать, что автоклав тщательно стерилизовал свое содержимое. Большинство пакетов для автоклавов напечатаны краской, которая меняет цвет, когда материалы внутри достигают нужной температуры. Проблема с использованием этого типа пакетов заключается в том, что краситель находится на поверхности загрузки, и изменение цвета не гарантирует, что самые внутренние части большой загрузки в сумке также будут стерильными.Когда мешок автоклава содержит большую загрузку, простой способ проверить температуру — это обернуть содержимое автоклавной лентой и прикрепить веревку, поскольку оно помещается глубоко в груз, который нужно автоклавировать. Затем противоположный конец шнура прикрепляется лентой к внешней стороне мешка, чтобы индикатор можно было легко вытащить.

Сводка

В этой статье представлено понимание мешков для автоклавов. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Прочие медицинские изделия

Больше от технологического оборудования

.

Leave a reply

Ваш адрес email не будет опубликован.