F100 бетон: Морозостойкость F100 Морозостойкость бетона / Морозостойкость бетона / Бетон Ростов – купить бетон с доставкой по низкой цене в Ростове-на-Дону.

Содержание

Бетон М350 W8 В25 с морозостойкостью F100, F150 и F200

Цены на бетон В 25 (

М-350 W8)




Класс (Марка)Фракция крупного заполнителяПластичностьЦена за куб 
В25 (М350 W8)5-20П3(ОК 10-15)4 160 руб/м3заказать
В25 (М350 W8)5-20П4 (ОК 16-20)4 240 руб/м3заказать

Рассчитать стоимость заказа Прайс-лист на товарный бетон

 

Характеристики

  • Марка бетона – M350 W8.
  • Класс бетона – В-25.
  • Морозостойкость (F) – F100-F300.
  • Водонепроницаемость (W) – W8.

Описание

Бетон марки М350, соответствующей классу прочности B25, обладает повышенной водонепроницаемостью W8, морозостойкостью F100-F300. Подвижность бетонной смеси – П2-П4.

Материалы с показателями П2, П3 относятся к малоподвижным растворам, при укладке которых требуется применять виброуплотнители. Высокоподвижная смесь с показателем П4 востребована для заливки в опалубку с частым расположением арматурных элементов при сложности осуществления трамбовки.

В состав бетонной смеси входят:

  • цемент марок М400 и М500;
  • песок речной или карьерный мытый или сеяный;
  • гранитный или гравийный щебень;
  • вода из питьевого трубопровода или очищенная;
  • присадки, способные улучшить характеристики пластичного раствора или готового продукта.

Область применения

Бетон марки М350 W8 используется для:

  • строительства конструкций с высокими требованиями по прочности, морозостойкости и водонепроницаемости – монолитных фундаментов многоэтажных зданий, колонн и других несущих элементов;
  • изготовления плит перекрытия, свай;
  • при производстве аэродромных плит.

Смотрите также

Расшифровка маркировки бетона, характеристики бетона

Бетон свойства и характеристики

*** параметр морозостойкости бетона

F морозостойкость — этот параметр обозначает сколько повторных циклов: замораживания и размораживания выдержит готовая смесь без потери его марочной прочности. Обозначается буквой F и измеряется в циклах от F50-1000.В нашем примере М300 имеет морозостойкость F200. Морозостойкость в самой смеси зависит от пористости бетона. Она может быть скорректирована специальными пластификаторами, которые снижают пористость состава и позволяют осуществлять заливку до -30°С. Морозостойкость — это параметр который определяет изностойкость бетона. Морозостойкость также зависит от ингредиентов и показателей их морозостойкости: песка и наполнителя. Зависит напрямую от качества порт ланд цемента, который входит в состав БСГ.

В целом можно сказать, что морозостойкость тяжелых марок бетона М100-М600 колеблется от F100-300 циклов:
• F100 в категориях В7,5-10
• F150 в категориях В12,5—15
• F200 в категориях B20—30
• F300 в категориях В30-45

В тощих бетонах эта цифра обычно составляет F50-F75.
Растворы РКЦ и БСЛ не обладают таким параметром либо он тоже минимален.

Какой стоит сделать вывод о данной характеристики:
— Что бетоны с низкой морозостойкостью в F50-75 стоит использовать во внутренних отделочных работах
— Бетоны с нормальной морозостойкостью F100-150 используют в строительстве в умеренном климате, но всё же, наверное, стоит применять от Ростова и южнее в сторону Сочи
— Бетоны с повышенным значением этого параметра F200-F300 стоит использовать в средней полосе России, например в Москве и Московской области, Сибири, он также подойдет для устройства бассейнов
— Получает от F300 и выше это уже специально приготовленные растворы для конкретных объектов строительства на севере или районах с глубоким промерзанием грунта. Такой бетон обычно производится на заказ.


W водонепроницаемость — характеризует способность БСГ не пропускать влагу, воду сквозь свою пористую структура под давлением.
Выделяют показатель: от W2-W14. В нашем случае у марки М300 этот параметр составляет: W6. Этот параметр, как и подвижность и морозостойкость повышается в заменимости от категории B7.5-B45. Этот параметр не так важен в общем и гражданском строительстве если речь не идёт о гидросооружениях, волнорезах, опорах мостов и других объектах водной и морской сферы.

Бетон в15 F100 (w4 f150): прочность, объем, состав

Бетон Б15 F100 – очень популярный ремонтно-строительный материал, который используется в создании самых разных зданий/конструкций. Бетон обладает достаточной прочностью для возведения несущих конструкций, его свойства позволяют применять материал в изготовлении/заливке разнообразных элементов, выполнении стяжки, садовых дорожек, монолитных фундаментов и т. д.

Бетон тяжелый Б15 М200 надежный и стойкий к различным воздействиям, предполагает строгое соблюдение нормативов по качеству и составу компонентов, технологии приготовления. Сравнительно низкая стоимость, наряду с достаточным уровнем долговечности и прочности – основное преимущество данной марки материала в сравнении с другими.

Особенности и применение

Марка бетона Б15 М200 классифицируется как конструкционный материал. Из него обычно создают несущие каркасы сооружений (колонны, плиты, панели), которые не должны выполнять теплозащитные функции.

Бетон считается тяжелым по плотности, в его состав, как правило, вводят портландцемент марок М400/М500. Кроме цемента, в составе также работают песок, щебень, вода. Бетон класса В15 может обладать разными свойствами, которые напрямую зависят от типа и объема компонентов в растворе.

Где применяют бетон В15:

  • Заливка площадок и бетонных лестниц, которые подвергаются воздействию низких/высоких температур – выбирают бетон В15 с уровнем морозостойкости F75 либо F150.
  • Фундамент для дома – марки разные по морозостойкости и прочности.
  • Внутренние несущие стены – морозостойкость может быть любой (обычно показателя бетона класса В15 достаточно), но прочность высокая.
  • Гидротехнические сооружения – тут основным показателем является водонепроницаемость на уровне минимум W
  • Доменные печи – используется жаростойкий бетон с добавлением магнезита и хромита (чтобы иметь возможность выдерживать воздействие температуры до 1700 градусов).

Как подбирают бетон для определенных целей:

  • Подбор будущего состава на бетонных узлах (в процентах обычно).
  • Испытание опытных образов в лабораторных условиях на предмет соответствия прочности по марке, внесение полученных данных в паспорт.
  • Заливка опытных кубиков величиной 15 х 15 х 15 сантиметров из каждой партии в условиях строительного объекта. Образцы должны твердеть в идентичных условиях тем, которые будут воздействовать на конструкцию.
  • По прошествии 28 суток контрольные образцы подвергаются испытанием с занесением всех полученных данных в специальный журнал. Если все в порядке, результаты предоставляют заказчику и он может начинать работы.

Достоинства

Класс В 15 предполагает определенные особенности и характеристики, которые обязательно нужно изучить до приготовления бетона и эксплуатации его на объекте.

Основные преимущества бетона В15:

  • Очень широкая сфера применения – раствор используется как в условиях частных домовладений, так и в работе с промышленными объектами.
  • Доступная стоимость – раствор получается недорогим и позволяет существенно понизить расходы, особенно в сравнении с расходами на приготовление других марок бетона.
  • Повышенная адгезия с поверхностью арматуры – смесь прекрасно работает в контакте с металлом, значительно повышает прочность конструкций.
  • Низкий уровень теплопроводности – понижаются расходы на приобретение утеплителя и поддержание оптимального температурного режима в помещении.
  • Стойкость к воздействию высоких температур и даже открытого огня – в пожароопасных ситуациях свойства и структура материала остаются неизменными.
  • Длительный срок эксплуатации – при условии, что смесь приготовлена правильно и прочность бетона соответствует нормативной, монолит сохранится без деформаций и разрушений долгое время.

Мастера утверждают, что данный класс бетона можно смело применять там, где отсутствуют повышенные нагрузки на элементы. Данный вид материала демонстрирует наилучшее соотношение качества и цены.

Недостатки

Минусов бетон В15 показывает очень мало. Основным является сравнительно невысокий уровень водонепроницаемости. В связи с этим в данном случае должны соблюдаться с особой точностью соотношения добавленной воды – ее вес не должен превышать 20% общей массы смеси.

Согласно сертификату качества и нормативам ГОСТ, тяжелый бетон класса М15 не стоит использовать в возведении конструкционных элементов домов, высота которых планируется более 5 этажей. Некоторые мастера считают бетон В15 М200 низкосортным, но это не делает его менее популярным.

Технические характеристики

Бетон В15 F100 демонстрирует определенные технические характеристики, которые можно менять, подбирая разные виды компонентов и их объем в составе раствора. Но по ГОСТу есть определенные показатели, считающиеся эталонными.

Основные свойства и параметры бетона В15:

  • Класс как показатель прочности – В15 обозначает способность выдерживать давление в 15 МПа. Маркировка класса используется строителями и проектировщиками, может переводиться в марку.
  • Прочность на сжатие – материал выдерживает нагрузку, равную 200 кг/м2 поверхности.
  • Плотность – от 1800 до 2500 на 1м3. Бетон считается тяжелым.
  • Водонепроницаемость и морозостойкость – определяются индексами W и F соответственно. Цифра рядом с индексом W (W2, W6, W12 и т.д.) определяет водонепроницаемость цилиндра 15 сантиметров при давлении в 2, 4, 6, 12 килограммов на квадратный сантиметр. Индекс F говорит о количестве циклов замораживания/оттаивания, которые может пережить бетон (F50, F150, F200). Считается, что в течение года бетон воспринимает около 4 циклов.
  • Жесткость и подвижность – обозначаются индексом П в диапазоне значений 1-5, демонстрируют временное свойство раствора удобно укладываться. Для узких опалубок, к примеру, готовят бетон В15 М200 с индексом не ниже П3.

Состав и пропорции

Состав данного типа бетона, как и любого другого, строго регламентируется. Стандартные пропорции с использованием цемента М400 выглядят так: часть цемента, 2.8 частей щебня, 4.8 частей песка и 0.5 части воды. Если используется марка М500, то соотношение такое: 1 часть цемента, 3.5 частей щебня, 5.6 частей песка, 0.5 частей воды.

Классический раствор с параметрами W2 и F50 применяется не очень часто, обычно лишь для внутренних работ. Для приготовления смеси нужно: 265 килограммов цемента, 860 килограммов чистого карьерного или речного песка, 1050 килограммов щебня, 180 литров воды и пластификатор в объеме, указанном в инструкции.

В общей массе щебень может быть любым – из гранита, известняка, гравия, но прочность его должна составлять минимум М400. Монолит В15 имеет тенденцию набирать прочность со временем: заявленную в течение 28 суток, а через несколько лет класс может даже вдвое увеличиться, сравниваясь с показателем прочности крупнофракционного наполнителя (именно поэтому желательно гравий выбирать с запасом прочности).

Если нужно обеспечить камню повышенные показатели стойкости ко влаге/морозу, лучше брать щебень М600, который сделает раствор более плотным. Тогда цемента в смеси должно быть минимум 280 килограммов на кубический метр. Водоцементное соотношение в таком случае равно 0.6-0.67.

Для получения максимально качественной смеси используют метод подбора оптимального состава. Сначала составляют карту подбора компонентов с осадкой конуса 4 сантиметра при введении в состав вяжущего марки М400, тщательно просеянного песка плотностью 2600 кг/м3 и гранитного щебня фракции 20 миллиметров и плотностью (насыпной) в пределах 1400 кг/м3.

Водоцементное отношение вычисляют по специальной формуле. Исходя из сферы применения бетона, крупность гравия может быть разной. Для ее определения используют сита с отверстиями величиной 5, 10, 20, а также 40 и 70 миллиметров. Выбор щебня: для балок шириной 20 сантиметров берут гравий фракции максимум 5 сантиметров, для монолитного фундамента – до 15 сантиметров. Также информацию можно найти в ГОСТе.

Бетон В15 можно приготовить самостоятельно либо заказать на любом заводе в Москве и регионах. Данный класс бетона представляет собой наилучшее соотношение стоимости и качества, поэтому может использоваться для реализации самых разных задач. Прежде, чем готовить и использовать бетон, нужно провести расчеты по проекту и определить требуемые характеристики и свойства, в соответствии с которыми корректируют состав.

Марки бетона, характеристика, прочность и класс бетона. Качественный бетон любой марки

КАЧЕСТВЕННЫЙ БЕТОН 24 ЧАСА В СУТКИ

  • Качество бетона контролируется лабораторией компании ООО»СтройМонтаж»

  • Транспортировка бетона и инертных материалов осуществляется собственным автотранспортом

  • Минимальный заказ транспортировки бетона и инертных материалов 7 м3

Производство и реализация товарного бетона – одно из направлений работы компании ООО «СтройМонтаж». У нас можно приобрести бетонные смеси любой марки без переплаты за излишнюю прочность.

Бетон является одним из основных и самых распространённых строительных материалов, без его использования не обходится ни строительство, ни ремонт зданий или сооружений. При этом требуемые прочностные характеристики конструктивных элементов различны и предполагают использование марок бетона, соответствующих расчётным, определённым на стадии проектирования. Основная цель такого подхода – уменьшение сметной стоимости строительства или ремонта без снижения эксплуатационных и потребительских характеристик конструкций. Теоретически, марки бетона по прочности (М) входят в диапазон от 100 до 1000 с шагом в 50 единиц, однако, на практике — бетонные смеси с М более 500, как правило, не используются.

Прочность служит основной характеристикой материала, вместе с тем при проектировании учитываются и такие показатели, как:

  • водонепроницаемость(W)
  • морозостойкость(F)
  • подвижность(П)

Все эти параметры, в совокупности, определяют эксплуатационные параметры и срок службы конструктивных элементов зданий и сооружений. Но в основе всего лежит качество составляющих – цемента, заполнителей, специальных химических добавок и их процентного соотношения в замесе. В инженерной практике принято, что марку бетона определяет водоцементное отношение и степень уплотнения.

Интересной особенностью материала является характер твердения и набора прочности. За первые 7-10 дней после укладки смеси она набирает до 70% проектного прочностного потенциала, за 28 суток – почти 99,99%. Единственное условие – правильный уход, особенно в первые 2 недели после укладки, только в этом случае марка раскроет заложенный в ней потенциал, и конструкции из бетона будут обладать хорошим качеством. В дальнейшем, прочностные показатели будут всё более увеличиваться.

Определение марки бетона

В процессе приготовления и укладки бетонных смесей в обязательном порядке проводится комплекс лабораторных испытаний полученного материала. Вместе с прочностными характеристиками, определяются марки по морозостойкости, водонепроницаемости полученного в смесителе бетона, подвижности. Методы испытаний:

  • Испытания на прочность ведутся в виде регулярного тестирования (сжатия) эталонных образцов кубической формы, выдержанных в течение 28-ми суток в идеальных по температуре и влажности условиях. В марке бетона М100 или М500 цифры означают предел прочности на сжатие в кгс/ кв.см.
  • Морозостойкость определяется количеством многократно повторяющихся (до разрушения) циклов замораживания/оттаивания образцов.
  • Водонепроницаемость – односторонним гидростатическим давлением на образец до момента начала пропуска воды, измеряется в кгс/ кв.см.
  • Подвижность – способность растекаться под действием собственного веса свежесформованного бетонного конуса стандартных размеров.

В соответствии с существующей классификацией марки по морозостойкости обозначаются буквой F, по подвижности – П, по водостойкости бетона – W. Последняя характеристика имеет особое значение при строительстве гидротехнических сооружений, резервуаров для хранения воды, плавательных бассейнов.

Компания «СтройМонтаж» является производителем бетонных смесей, производственные мощности и технические возможности позволяют изготовить и доставить продукцию с любыми заявленными характеристиками в неограниченных количествах. Мы гарантируем полное соответствие марки бетона той, что указана в сопроводительной документации. Цены на нашу продукцию — одни из самых низких в этом сегменте рынка, для постоянных и оптовых клиентов разработана и действует система специальных предложений и скидок.

Бетоны, растворы | АО «Салаватнефтехимремстрой»

БЕТОНЫ тяжелые:

Бетон М-100, М-150

Бетон БСТ В7,5 П2 F50 W2

ГОСТ 26633-91 с изм.1

2100-2500

Бетон БСТ В10 П2 F75 W2

Бетон БСТ В12,5 П2 F75 (F50) W2 (W-)

Бетон БСТ В12,5 П2 F100 W2

Бетон БСТ В12,5 П2 F150 W4

Бетон М-200

Бетон БСТ В15 П2 F75 (F50) W2 (W-)

ГОСТ 26633-91 с изм. 1

2100-2500

Бетон БСТ В15 П2 F100 W4 (W2)

Бетон БСТ В15 П2 F100 W6

Бетон БСТ В15 П2 F150 W4

Бетон БСТ В15 П2 F150 W6

Бетон БСТ В15 П2 F150 W10 (W8)

Бетон М-250

Бетон БСТ В20 П2 F75 (F50) W4 (W2)

ГОСТ 26633-91 с изм.1

2100-2500

Бетон БСТ В20 П2 F100 W4 (W2)

Бетон БСТ В20 П2 F150 W6 (W4, W2)

Бетон М-300

Бетон БСТ В22,5 П2 F75 W2

ГОСТ 26633-91 с изм.1

2100-2500

Бетон БСТ В22,5 П2 F100 W4 (W2)

Бетон БСТ В22,5 П2 F150 W6 (W4, W2)

Бетон БСТ В22,5 П2 F200 W8 (W6)

Бетон М-350

Бетон БСТ В25 П2 F75 W2

ГОСТ 26633-91 с изм. 1

2100-2500

Бетон БСТ В25 П2 F100 (F75) W4 (W2)

Бетон БСТ В25 П2 F150 W6 (W4)

Бетон БСТ В25 П2 F200 W8 (W6)

Бетон БСТ В25 П2 F300 W8 (W6)

Бетон БСТ В27,5 П2 F200 (F150) W8 (W6, W4)

Бетон М-400, М-450

Бетон БСТ В30 П2 F200 (F150) W8 (W6, W4)

ГОСТ 26633-91 с изм.1

2100-2500

Бетон БСТ В30 П2 F300 W8 (W6, W4)

Бетон БСТ В35 П2 F200 W8 (W6, W4)

Бетон для бетононасосов

Бетон БСТ В7,5 П3 F50 W2

ГОСТ 26633-91 с изм.1

2100-2500

Бетон БСТ В10 П3 F50 W2

Бетон БСТ В12,5 П3 F75 (F50) W2 (W-)

Бетон БСТ В15 П3 F75 (F50) W4 (W2, W-)

Бетон БСТ В20 П3 F75 (F50) W4 (W2)

Бетон БСТ В22,5 П3 F100 W4 

Бетон БСТ В25 П3 F150 W6 (W4)

Бетон мелкозернистый

Бетон БСМ В7,5 П2 F50 W2

ГОСТ 26633-91 с изм. 1

2100-2500

Бетон БСМ В10 П2 F50 W2

Бетон БСМ В12,5 П2 F50 W2

Бетон БСМ В15 П2 F75 W4

Бетон БСМ В20 П2 F100 (F75) W4

Бетон БСМ В22,5 П2 F100 W6 (W4)

Бетон БСМ В25 П2 F150 W6 (W4)

БЕТОНЫ тяжелые (с противоморозной добавкой):

Бетон М-100, М-150

Бетон БСТ В7,5 П2 F50 W2 с противоморозной добавкой

ГОСТ 26633-91 с изм.1

2100-2500

Бетон БСТ В12,5 П2 F50 W2 (W-) с противоморозной добавкой

Бетон БСТ В12,5 П2 F150 (F100) W4 (W2) с противоморозной добавкой

Бетон М-200

Бетон БСТ В15 П2 F75 (F50) W4 (W2, W-) с противоморозной добавкой

ГОСТ 26633-91 с изм. 1

2100-2500

Бетон БСТ В15 П2 F150 (F100) W6 (W4) с противоморозной добавкой

Бетон М-250

Бетон БСТ В20 П2 F100 W4 (W2) с противоморозной добавкой

ГОСТ 26633-91 с изм.1

2100-2500

Бетон БСТ В20 П2 F150 W6 (W4) с противоморозной добавкой

Бетон М-300

Бетон БСТ В22,5 П2 F150 W6 (W4, W2) с противоморозной добавкой

ГОСТ 26633-91 с изм.1

2100-2500

Бетон БСТ В22,5 П2 F200 W8 (W6, W4) с противоморозной добавкой

Бетон М-350

Бетон БСТ В25 П2 F150 W6 (W4) с противоморозной добавкой

ГОСТ 26633-91 с изм. 1

2100-2500

Бетон БСТ В25 П2 F200 (F150) W8 (W6, W4) с противоморозной добавкой

Бетон М-400

Бетон БСТ В30 П2 F300 W8 с противоморозной добавкой

ГОСТ 26633-91 с изм.1

2100-2500

Бетон БСТ В30 П2 F200 (F150) W8 (W6, W4) с противоморозной добавкой

Бетон для бетононасосов (с противоморозной добавкой)

Бетон БСТ В7,5 П3 F50 W2 с противоморозной добавкой

ГОСТ 26633-91 с изм.1

2100-2500

Бетон БСТ В12,5 П3 F50 W2 с противоморозной добавкой

Бетон БСТ В15 П3 F75 W4 (W2) с противоморозной добавкой

Бетон БСТ В20 П3 F100 W6 (W4) с противоморозной добавкой

Бетон БСТ В22,5 П3 F100 W6 (W4) с противоморозной добавкой

Бетон БСТ В25 П3 F150 W6 (W4) с противоморозной добавкой

РАСТВОРЫ строительные (с противоморозной добавкой):

Раствор М-50 (с противоморозной добавкой)

ГОСТ 28013-98 с изм. 1

1700-2180

Раствор М-75 (с противоморозной добавкой)

Раствор М-100 (с противоморозной добавкой)

Раствор М-150 (с противоморозной добавкой)

Раствор М-200 (с противоморозной добавкой)

РАСТВОРЫ строительные:

Раствор М-10

ГОСТ 28013-98 с изм.1

1700-2180

Раствор М-25

Раствор М-50

Раствор М-75

Раствор М-100

Раствор М-150

Раствор М-200

V-MAR® F100 | Ресурс | GCP Applied Technologies

Описание продукта

V-MAR® F100 — это высокоэффективная жидкая добавка, модифицирующая реологические свойства. Использование добавки V-MAR® F100 придает бетону смазывающую способность, что приводит к повышению производительности и бетону с улучшенной текстурой поверхности.

Добавка V-MAR® F100 поставляется в виде готовой к использованию жидкости, которая весит приблизительно 8,5 фунтов / галлон (1,02 кг / л). Примесь V-MAR® F100 не содержит намеренно добавленных хлоридов.

использует

V-MAR® F100 — это многоцелевая добавка, которая снижает трение в бетонной смеси, что приводит к получению смеси с высокими рабочими характеристиками.

V-MAR® F100 может использоваться для обычных бетонных смесей и смесей SCC. Он особенно эффективен в условиях нулевой и низкой осадки, таких как бетонные трубы, экструзия бетона, бетонное покрытие, бетон скользящей формы и бетон, уплотненный роликами.

Преимущества

Бетон, произведенный с использованием V-MAR® F100, имеет следующие преимущества:

  • Повышение производительности за счет увеличения пропускной способности
  • Бетон перемещается легче и быстрее благодаря технике
  • Улучшенная кремообразная консистенция и улучшенная отделимость
  • Бетон уплотняется с пониженной вибрацией
  • Обеспечивает превосходную водостойкость бетона, делая его менее восприимчивым к нормальным колебаниям влажности при производстве.
  • Облегчает использование угловых заполнителей и / или искусственного песка в бетоне
  • Обеспечивает отделку с заметным уменьшением дефектов поверхности
  • Бетон требует меньше цемента для закрытия поверхностей, что приводит к снижению материальных затрат

Преимущества продукта

  • Изменяет реологические свойства бетона для повышения удобоукладываемости
  • Позволяет производить бетонные смеси, которые являются связными, но не липкими.
  • Облегчает выдавливание бетона
  • Улучшенный внешний вид поверхности бетона
  • Более высокая скорость разгрузки бетона

Сумма ставок

V-MAR® F100 — жидкая добавка, которую легко дозировать.Нормы дозировки можно регулировать для удовлетворения широкого спектра конкретных требований к рабочим характеристикам. Нормы добавления V-MAR® F100 могут варьироваться в зависимости от типа применения, но обычно составляют от 3–12 жидких унций / 100 фунтов (195–780 мл / 100 кг). В большинстве случаев достаточно добавления 5–8 жидких унций / 100 фунтов (325–520 мл / 100 кг) вяжущего материала. Обратитесь к своему представителю GCP Applied Technologies за помощью в разработке дизайна смеси.

Совместимость с другими добавками и последовательностью партий

V-MAR® F100 совместим с большинством добавок GCP, если они добавляются отдельно в бетонную смесь.V-MAR® F100 следует добавлять в бетонную смесь как можно раньше в последовательности замеса для оптимальной производительности. Если локальное тестирование показывает лучшую производительность, можно использовать другое секвенирование. Дополнительные рекомендации см. В техническом бюллетене GCP TB-0110, Расположение линии разгрузки дозатора добавки и последовательность для бетонных операций .

Предварительные испытания бетонной смеси следует проводить перед использованием, а также по мере изменения условий работы и материалов, чтобы гарантировать совместимость с другими добавками, а также оптимизировать дозировку и время добавления в последовательности партий, чтобы оптимизировать характеристики бетона.

Для бетона, который требует воздухововлекающих материалов, рекомендуется использовать воздухововлекающий агент ASTM C260, чтобы обеспечить подходящие параметры воздушных пустот для устойчивости к замораживанию-оттаиванию. Проконсультируйтесь с вашим представителем GCP Applied Technologies за указаниями.

Упаковка и обращение

V-MAR® F100 доступен оптом, в бочках и бочках. V-MAR® F100 замерзнет при температуре примерно 28 ° F (-2 ° C), но вернется к полной функциональности после оттаивания и тщательного механического перемешивания.

Раздаточное оборудование

Доступна полная линейка точного автоматического дозирующего оборудования.

Морозостойкость — обзор

11.4 Лабораторные испытания и влияние различных параметров

Морозостойкость бетона обычно определяют, подвергая образцы, приготовленные в лаборатории, нескольким циклам замораживания и оттаивания в воде или замораживания на воздухе. и оттаивание в воде в диапазоне температур от + 4 ° C до –18 ° C или –20 ° C. Чтобы получить результаты за относительно короткий период времени, образцы обычно подвергают пяти или более циклам в день, поскольку, как и в стандартной процедуре ASTM C666, количество циклов часто фиксируется на уровне 300. Для оценки степени внутреннего растрескивание и, следовательно, повреждение из-за воздействия мороза, две наиболее распространенные процедуры — это измерение изменения длины (ASTM C671) и измерение динамического модуля упругости. Изменение длины более чем на 200 мкм / м (приблизительно) или потеря модуля упругости обычно указывает на то, что внутренняя структура бетона была значительно повреждена микротрещинами.Потеря массы также может быть измерена, но она больше связана с сопротивлением образованию отложений на поверхности, чем к внутреннему растрескиванию, а сопротивление образованию отложений — это свойство, обычно определяемое с помощью тестов на образование отложений в антиобледенителе, как описано в следующем разделе.

Лабораторные испытания убедительно показали, что почти для всех типов бетона существует критическое значение коэффициента расстояния между воздушными пустотами. Если коэффициент интервала выше этого критического значения, испытываемый образец бетона очень быстро разрушается в результате циклов.Происходит микротрещина, и происходит быстрая потеря механических свойств. Если коэффициент интервала ниже этого критического значения, образец бетона может выдержать очень большое количество циклов без каких-либо значительных повреждений. На рисунке 11.4 показаны результаты серии испытаний на цикл замораживания и оттаивания, проведенных на типичном портландцементном бетоне. Все смеси были приготовлены при постоянном соотношении свободной воды к цементу 0,5, но с разными сетками воздуховодов. Как показывают результаты, для этого бетона существует критическое значение коэффициента зазора между воздушными пустотами.Все смеси с интервалом, значительно превышающим 500 мкм, очень быстро разрушались циклами. Такое поведение типично для того, что наблюдается в лаборатории: морозостойкость образца бетона обычно либо очень хорошая, либо очень низкая. Как показано на Рисунке 11. 4, умеренная степень износа наблюдается нечасто.

Рисунок 11.4. Критический коэффициент интервала между замораживанием и оттаиванием (для стандартного в / ц бетона: 0,5).

Критическое значение коэффициента расстояния между воздушными пустотами зависит от многих параметров, но в основном от тех, которые влияют на пористость: отношение воды к связующему, тип связующего, продолжительность отверждения и использование определенных примесей.Это также, конечно, зависит от условий испытаний, то есть в основном от скорости замерзания, минимальной температуры, продолжительности периода при минимальной температуре и наличия воды. Экспериментально показано, что критическое значение коэффициента интервала уменьшается с увеличением скорости замерзания во время испытаний. Интересно отметить, что для большинства бетонов хорошего качества с отношением воды к связующему 0,6 или менее, независимо от типа связующего (и даже для напыленных бетонов или бетонов, модифицированных латексом), испытания проводились в соответствии с одной из двух процедур ASTM C666 (замораживание и оттаивание) в воде или замерзание на воздухе и таяние в воде), за исключением, возможно, некоторых высокоэффективных бетонов (см. раздел 11.7) критическое значение коэффициента зазора между воздушными пустотами составляет от 200 до 600 мкм. Значение 200 мкм типично для бетона с надлежащим воздухововлекающим эффектом, а значение 600 мкм соответствует нижнему пределу диапазона для бетона без воздухововлекающего материала. В связи с этим неудивительно, что большинство практических правил (см., Например, CSA-A23.1 / A23.2) рекомендуют максимальное значение коэффициента расстояния между воздушными пустотами 200 мкм, тем более что, как и будет Как показано в следующем разделе, это значение также требуется для хорошей устойчивости к образованию накипи из-за замерзания в присутствии антиобледенительных солей.Еще в 1949 году на основе лабораторных испытаний Пауэрс предложил значение 250 мкм.

Чтобы оценить влияние любой данной переменной на морозостойкость бетона, необходимо определить критический коэффициент зазора между воздушными пустотами для рассматриваемого бетона, а затем сравнить его с эталонной смесью. Более высокое критическое значение указывает на лучшую производительность, поскольку бетон требует более низкой степени защиты от мороза, а более низкое значение — более низкой производительности. Очень часто исследователей вводят в заблуждение, потому что не определен критический коэффициент интервала. Поэтому вполне возможно, что наблюдаемое положительное влияние данной добавки на морозостойкость, например, связано не с улучшенной микроструктурой, а просто с улучшенной системой воздушных пустот!

Заполнители являются важным компонентом любого бетона, и их, конечно же, всегда следует выбирать должным образом, чтобы гарантировать, что они не будут отрицательно влиять на морозостойкость бетона.Некоторые агрегаты, обычно характеризующиеся высокой пористостью и низким средним размером пор, просто не устойчивы к морозу. Благодаря своей мелкопористой структуре они легко насыщаются, а давление из-за движения воды при образовании льда выше, чем предел прочности агрегата на разрыв. Это особенно характерно для крупных частиц заполнителя, поскольку в этом случае вода должна пройти большое расстояние во время замерзания. Другие типы заполнителей, даже если они морозостойкие, могут оказывать негативное влияние, вытесняя воду из окружающей пасты при замерзании. Высокая пористость, абсорбция 2%, обычно считается верхним пределом, указывает на потенциальные проблемы. Очевидно, что доступ к воде снова является очень важным условием, и поэтому низкая пористость пасты помогает снизить степень насыщения агрегатов во время замерзания. Воздухововлечение также важно, поскольку воздушные пустоты вблизи границы раздела паста-заполнитель могут помочь снизить давления, возникающие из-за вытеснения воды заполнителем в окружающую пасту.

Относительно распространенный тип разрушения от мороза — это то, что в Северной Америке называется растрескиванием по линии D (растрескивание по линии разрушения). Как упоминалось ранее, наличие влаги является основным условием разрушения от мороза, и это часто имеет место вблизи стыков в бетонных покрытиях. Если бетон недостаточно защищен воздухововлекающими добавками или если используются определенные типы заполнителей, морозное повреждение приводит к образованию трещин, близких к швам и параллельно им.

Учитывая важность степени насыщения для морозостойкости, Фагерлунд (1975) разработал концепцию критической степени насыщения. Для любого бетона существует критическая степень насыщения, так что повреждение от замерзания неизбежно произойдет, если бетон замерзнет, ​​когда степень насыщения выше критического значения (см. Рисунок 11.5). Чем дольше конкретный бетон достигает критической степени насыщения, тем лучше его морозостойкость.Очевидно, что качественный бетон с воздухововлекающими добавками требует очень много времени для достижения критического насыщения, особенно потому, что капиллярные силы в воздушных пустотах очень малы (большинство воздушных пустот имеют диаметр более 25 мкм). Эта концепция подчеркивает важность доступа к воде и может использоваться для прогнозирования срока службы, то есть времени, необходимого для достижения критического насыщения в полевых условиях.

Рисунок 11.5. Связь между относительным динамическим модулем упругости и степенью насыщения бетона.

Номера FF и FL — ровность и ровность пола

F-номера предоставляют архитекторам и подрядчикам метод определения ровности и ровности бетонной плиты перекрытия. Они рассчитываются с использованием стандартов, изложенных в ASTM E1155, который представляет собой стандартный метод испытаний для определения плоскостности пола F F и F L Числа горизонтальности пола . Американский институт бетона указывает допустимые диапазоны плоскостности и ровности в ACI 302.1, Руководство по устройству бетонных перекрытий и перекрытий . Архитектурные спецификации будут определять приемлемые номера FF и FL для проекта, поэтому архитекторы должны понимать ограничения установки бетонных плит.

История ровности и ровности бетонного пола

Традиционно бетонные полы имели отклонение менее 1/8 дюйма на 10 футов. Это измерялось путем укладки 10-футовой линейки на готовый пол и измерения наибольшего зазора под линейкой.Этот метод неплохо работал десятилетиями. Однако этот метод также оказался ненадежным и подвержен ошибкам, поскольку никакие два человека никогда не получат одно и то же измерение. Кроме того, расстояние от 1/8 дюйма до 10 футов редко достигалось с помощью оборудования, доступного в прошлом.

С появлением в 1970-х годах многоэтажных узкопроходных складов стало более важным иметь более плоские бетонные полы, чем раньше. Более современные складские технологии, такие как домкраты для воздушных поддонов, и новые технологии, разработанные для телестудий, с тех пор создали потребность в еще более плоских полах.По мере развития технологий требовались очень плоские и суперплоские полы.

В 1979 году компания Allen Face разработала систему F-номеров, официально получившую название Система нумерации профилей лицевого пола , которая позже была формализована в национальных стандартах ASTM E1155 и ACI. Позже он разработал прибор для измерения профиля пола Dipstick ® и F-Meter ® , инструменты, необходимые для проведения более точных измерений, чем метод линейки.

Новые F-числа более точны, чем измерения, сделанные с помощью линейки, поскольку профилирующие машины измеряют каждую ногу в нескольких перпендикулярных направлениях при измерении ровности пола. Для больших плит требуются сотни измерений, чтобы получить числа F F и F L — 34 измерения выполняются на каждую 1000 квадратных футов бетонной плиты. Собранные измерения затем вводятся в математическую формулу для получения общих F-чисел. Хотя вполне вероятно, что два человека получат разные измерения при использовании метода линейки, два человека, использующие современные измерительные приборы, должны в конечном итоге получить очень похожие F.

Уровень пола (F

L )

Номера

F L предоставляют информацию о ровности бетонного пола.Выровненность показывает, насколько готовый пол соответствует предполагаемому уклону, указанному в проектной документации. Перепад высот измеряется каждые 10 футов в течение 72 часов после укладки бетона, и эти измерения вводятся в расчет для определения уровня пола (F L ). Более высокие числа F L указывают на более ровный этаж, а числа линейны, поэтому F L из 50 в два раза выше уровня, чем F L из 25.

Важно отметить, что номера F L обычно применимы только к плитам, которые размещаются на уклоне.Бетонные плиты на возвышении представляют собой проблему, поскольку эти плиты имеют тенденцию иметь выпуклость, встроенную в конструкцию, и плиты перекрытия обычно прогибаются после удаления опорной ступени. Следовательно, номера F L указываются только на приподнятых плитах, когда измерения выполняются до удаления берегов и форм, а плита не имеет выпуклости. В случае приподнятого перекрытия с изгибом, F L структурная плита должна быть помещена первой (с отклонением до своей окончательной формы), а затем завершена отделочная плита, которая измеряется для уровня ровности пола.

Плоскостность пола (F

F )

F F Цифры показывают ровность пола, или насколько близок пол к плоскому. Другими словами, ровность пола — это статистическое измерение того, насколько волнистым или ухабистым является бетонный пол, и учитывает амплитуду (высоту, если волны) и длину волны (расстояние между волнами по горизонтали). Перепады высот снимаются на каждую ногу в течение 72 часов после укладки бетона, и формула определяет размер F F .Как и в случае с F L , размеры являются линейными, и более высокие числа соответствуют более плоскому полу. Например, пол с размером F F , равным 60, в два раза более плоский, чем пол с F F , равным 30.

F F Номера могут быть приняты как для перекрытий на уровне земли, так и для перекрытий на возвышении. Ровность пола, как правило, очень важна в помещениях, где оборудование должно быть установлено идеально ровно — в таких помещениях, как телевизионные студии, склады, в которых используются домкраты для воздушных поддонов, и в некоторых исследовательских лабораториях требуются полы более плоские, чем типичная бетонная плита.

Поскольку старый метод измерения заключался в измерении наибольшего дефекта вдоль 10-футовой линейки, полезно понять, как числа линейки переводятся в F F . Кроме того, архитекторам и владельцам полезно визуализировать, насколько волнистыми или неровными могут быть разные значения F F . Интересно, что большинство плит, размещенных за последние 50 лет, попадают в диапазон F F 15 и F F 35. Имейте в виду, что нет прямой корреляции между числами F F и старыми числами линейной линейки, но эти значения дают общую оценку:

F F 25 будет иметь один дефект 1/4 дюйма на длине 10 футов

F F 50 будет иметь один дефект 1/8 дюйма на длине 10 футов

F F 100 будет иметь один дефект 1/16 дюйма на длине 10 футов

Классификация бетонных полов по плоскостности и ровности

Специалисты по бетону используют специальную терминологию для классификации ровности и уровня пола.Согласно ACI 117, бетонные полы с произвольным движением подразделяются на следующие категории. Имейте в виду, что выравнивание используется только для размещения плиты на уровне земли.

Классификация Заданная общая плоскостность (SOF F ) Заданный общий уровень (SOF L )
Обычный 20 15
Умеренно плоский 25 20
Плоский 35 25
Очень плоский 45 35
Супер плоский 60 40

Суперплоские полы требуют специальных навыков и оборудования, и их следует использовать только для самых ответственных бетонных полов в специализированных программах, таких как телевизионные студии. Суперплоские полы также могут иметь F F 100 и F L 50, но они предназначены для установок с определенным движением (одно направление движения), таких как узкопроходные склады, в отличие от этажей с произвольным движением. что стандарт ACI 117 покрывает.

Допустимые номера F

F и F L в зависимости от использования

Часто у архитекторов возникает вопрос: «Насколько плоскими должны быть бетонные полы в моем проекте?» Это очень сложный вопрос, и архитекторы иногда могут слишком осторожно ошибаться и указывать полы намного более плоские, чем необходимо, что может увеличить стоимость проекта клиента.Хорошая новость заключается в том, что процедуры и оборудование значительно улучшились за последние 20 лет, и полы, как правило, становятся намного более плоскими, чем были, без особых дополнительных затрат.

Согласно публикации Американского института бетона ACI-302.1, следующие значения F F и F L являются приемлемыми на основе перечисленных применений. Имейте в виду, что значения F L применимы только к плитам на уклоне.

Использование Плоскостность пола (F F ) Уровень пола (F L )
Некритические помещения, механические помещения, подсобные помещения, парковка, зоны для приема толстослойной плитки Ф. Ф. 20 F L 15
Общий офис, легкая промышленность, ковровое покрытие Ф. Ф. 25 F L 20
Общие складские полы, площади приема тонкослойной плитки, лаборатории Ф. Ф. 30-35 F L 20-25
Склады с использованием надувных поддонов, ледовые катки Ф. Ф. 45 F L 35
Кино- и телестудии Ж Ж > 50 F L > 50

Как определить ровность бетонного пола

Спецификации

Бетонный пол включают раздел в Часть 3 — Исполнение для Отделка . Часть этого раздела включает допустимые допуски для бетонных полов. Допуски также могут быть разбиты по типу программы; например, спецификация может определять один набор допусков для пола склада, другой набор допусков для телевизионной студии и третий набор допусков для офисных помещений в целом.

В рамках допусков программы будут предоставлены два набора значений: заданные общие значения (SOV) для F F и F L , а также минимальные локальные значения (MLV) для F F и F L .

Заданные общие значения предоставляет критерии для всего проекта посредством средних значений F F и F L для всех бетонных полов в проекте.

Минимальные местные значения предоставляют критерии для минимально допустимых значений F F и F L для каждой секции бетона, уложенной (или для каждой «заливки») в проекте. Показания MLV могут быть записаны для отдельного этажа, или несколько показаний MLV могут быть сняты на большом этаже, состоящем из нескольких секций («заливок»). Критерии минимального локального значения часто будут ниже (менее плоские / горизонтальные), чем заданные общие значения, чтобы допустить погрешность при укладке бетона.

Спецификации также будут определять, когда и где следует проводить измерения — это часто достигается путем ссылки на ASTM E1155, Стандартный метод испытаний для определения плоскостности пола F F и F L Номера уровня . Как правило, измерения следует проводить, когда бетон готов принять пешеходное движение, но ASTM E1155 требует, чтобы испытания были завершены в течение 72 часов после укладки.Кроме того, испытания проводятся перед снятием опалубки с плиты.

Спецификации также могут указывать, как должны быть отремонтированы полы, не соответствующие техническим характеристикам. В общем, шлифовка пола только усугубит ситуацию. Гидроизоляционные или самовыравнивающиеся смеси могут помочь исправить пол, если бетон не будет обнажаться. Наихудшего сценария удаления пола, не отвечающего техническим требованиям, и его замены обычно избегают из-за графика и финансовых последствий. Однако владелец может принять решение о получении финансовой компенсации от подрядчика, если он решит принять этаж, не отвечающий техническим требованиям.Архитекторы должны понимать значения F F и F L , чтобы они могли посоветовать своим клиентам уровень плоскостности, требуемый программой, а также дать совет по приемлемой плоскостности в исходном состоянии и методам исправления, если это необходимо.

Дополнительная литература

У Face Company есть ответы на 40 наиболее часто задаваемых вопросов о F-числах, которые написаны для подрядчиков, но также могут быть полезны архитекторам и разработчикам, если вы хотите более подробно рассказать о F , F и F . Номера L .

FiberForce 100 | Микросинтетическое волокно

FiberForce 100 TM (формально Mono-Pro TM ) — это уникальное ультратонкое микросинтетическое моноволокно с высокой прочностью на разрыв и высоким модулем упругости, изготовленное из 100% первичных гомополимерных полипропиленовых смол.

Волокна

FiberForce 100 в основном используются в качестве армирования пластических усадочных трещин в бетоне. FiberForce 100 предлагает звездное усиление усадки пластика, а также отличное распределение и отделку.Волокно также продлевает срок службы за счет снижения проницаемости и повышения устойчивости к ударам и истиранию поверхности.

Приложения
  • Жилые и коммерческие перекрытия на земле
  • Палубы и патио
  • Штукатурка
  • Сухие фасованные продукты на цементной основе
  • Бассейны и террасы у бассейнов
  • Емкости для удержания воды
  • Сборные железобетонные изделия
  • Облицовка туннелей
Рекомендации по эксплуатации

При использовании под номером 0 никаких модификаций не требуется.50 фунтов на кубический ярд.

По вопросам дозировки, выходящих за пределы стандартного диапазона, обращайтесь к региональному эксперту FiberForce .

В 0,50 фунта продукта содержится примерно 35 миллионов отдельных волокон длиной 3/4 дюйма. Благодаря большому количеству волокон FiberForce 100, при использовании на 0,50 фунта, может уменьшить пластическую усадку и растрескивание осадка больше, чем обычные моноволокна, используемые при 1,0 фунте

FiberForce 100 не заменяет конструкционную сталь и не заменяет какую-либо сталь, которая используется при расчете несущей способности бетонного элемента.

Физические свойства
  • Материал Полипропилен
  • Поглощение Нил
  • Удельный вес 0,91
  • Устойчивость к щелочам Отлично
  • Точка плавления 320 ° F (160 ° C)
  • Низкая электропроводность
  • Стандартная длина 0,75 дюйма (19 мм)
  • Другая доступная длина0.5 дюймов (12,7 мм)
Особенности и преимущества
  • Равномерное распределение по бетонной матрице
  • Превосходная отделка
  • Превосходное снижение пластической усадки и образования трещин при пластической осадке
  • Значительно снижает проницаемость бетона, тем самым увеличивая прочность при замораживании-оттаивании и стойкость к мокрому и сухому
  • Повышает ряд свойств долговечности , таким образом, срок службы бетона
  • Превосходно подходит для смесей с макросинтетическими волокнами и стальными волокнами
Сертификаты на продукцию и соответствие отраслевым стандартам
  • ASTM C1116 Раздел 4. 1.3 и примечание 2
  • ASTM D7508
  • ICC ES AC32 Раздел 3.1.1
  • Внесен в список ICC ESR-1699

Что такое суперплоские полы?

Бетонные полы, необходимые для соответствия более жестким требованиям к ровности и ровности, известны как суперплоские полы. Они обслуживают погрузчики, погрузчики и другие транспортные средства, которые работают в распределительных и складских центрах.

Полы

Superflat популярны благодаря своей низкой стоимости, высокой производительности и безопасности.Впервые они появились в 1970-х годах, когда операторы складов начали использовать конфигурации хранилищ с более высокой плотностью, чтобы минимизировать вложения в землю и оптимизировать погрузочно-разгрузочные работы и хранение материалов.

Обычные методы строительства не могут создать поверхности пола с ровностью или ровностью, которые требуются передовым погрузчикам для работы в условиях проводной проводки с узкими проходами, высокими стеллажами и определенным движением. Для этих сред необходимы специальные методы строительства, включающие методы полосовой заливки.Давайте узнаем больше о суперплоских полах, их конструкции и характеристиках, а также о том, как они используются.

Что такое суперплоский пол?

Суперплоский пол изготавливается с гораздо более жесткими допусками, чем обычная плита перекрытия, с использованием специальной системы допусков, называемой системой допусков Fmin. Это основано на определении максимального отклонения этажа для определенного погрузчика. Оптимизация поверхности дает множество преимуществ: она оптимизирует производительность погрузчика, снижает затраты на техническое обслуживание и исключает вероятность проблем с подбором, в том числе удара о стойку.

Строители могут с высокой точностью контролировать продольные и поперечные допуски, используя специальные методы, материалы и опалубку для заливки бетона узкими полосами. Подрядчики должны учитывать следующее при определении и проектировании суперплоских полов:

  • Разливка полосой является обязательной: Техника разливки полосой абсолютно необходима для высоких стеллажей и узких проходов, где используются грузовые автомобили с автоматическим управлением или автомобили с автоматическим управлением. В противном случае добиться этих жестких допусков в поперечном и продольном направлениях крайне сложно.
  • Суперплоские полы не должны иметь поперечных пропилов. : Усадка и скручивание могут возникать в поперечных швах сужения, что может привести к потерям допусков и сделать суперплоские полы совершенно непригодными для использования.
  • Допуски пола необходимо измерять каждый день: это должно выполняться с помощью высокочувствительного профилографа. Если допуски не измеряются ежедневно, то любые дефекты конструкции без необходимости усугубятся. Если пол не обмерен, то качество его поверхности не может быть подтверждено.Ниже мы рассмотрим оборудование профилографа более подробно.
  • Допуски Fmin применяются только к этажам с определенным движением : Система допусков FF / номеров FF / FL используется для поверхностей со случайным движением, а не с определенным движением. В системе FF / FL не учитываются допуски оборудования в поперечном и продольном направлениях.
  • Убедитесь, что непрерывная сталь, встроенная в бетон, расположена правильно. : Ее расположение не должно нарушать электрические сигналы проводника.Доказано, что стальные волокна этого не делают. Они также долговечны, экономичны и универсальны, поскольку могут удовлетворить самые разные потребности пользователей.
  • Некоторые отвердители сухого встряхивания могут не работать. : Определенные отвердители сухого встряхивания могут помешать достижению суперплоских допусков. Обычно используемые поверхностные решения зависят от бетонной смеси с пониженным износом с максимальным значением 0,50 в / ц и жидкого уплотнителя. Выбор жидкого уплотнителя зависит от окружающей среды и требует тщательного рассмотрения.

Допуски пола для суперплоского пола

Спецификации плиты перекрытия

в США часто включают систему чисел F для определения допусков поверхности. Есть две основные категории этажей:

  • Случайный трафик : Подавляющее большинство этажей в этой стране попадает в эту категорию. Пешеходы и автопогрузчики могут беспрепятственно пересекать эти этажи в любом направлении.
  • Defined-traffic : Эти этажи обычно нужны только для очень специализированных приложений, включая VNA или склады с очень узким проходом, где вилочные погрузчики должны перемещаться по одному и тому же пути каждый день.В настоящее время этажи с установленным трафиком составляют очень небольшой процент от этажей в США, хотя их популярность растет из-за того, что владельцы все больше осознают свои преимущества.

Вилочные погрузчики на складах VNA перемещаются по проходам шириной 6 футов между стеллажами с помощью широкой направляющей системы, встроенной в пол, или рельсов, установленных в стойку. Размеры самих погрузчиков составляют около 5 футов в ширину и 7 футов в длину. При движении по проходу погрузчик может поднимать вилы для размещения или извлечения продуктов на разных уровнях.Чтобы эти лифты работали по назначению, этажи с определенным трафиком должны быть суперплоскими.

Superflat Vs. Допуски случайного трафика

Для того, чтобы подрядчики успешно построили суперплоский пол, необходимо правильно указать пол. Однако одна из распространенных ошибок состоит в том, что спецификатор призывает к допускам случайного трафика, когда требуются суперплоские допуски. Эта ошибка обычно является результатом плохого понимания требований или попытки потратить меньше денег.

К сожалению, разработчикам спецификаций суперплоских полов практически нет информации. Американский институт бетона и стандарты ASTM предоставляют мало информации по этому вопросу. Этот недостаток информации часто вызывает путаницу.

Производители погрузчиков рекомендуют определенные допуски на пол, чтобы гарантировать правильную работу их оборудования. В отличие от этажей с произвольным трафиком, которые имеют требования FF / FL, superflat является минимальным допуском и должен быть записан с использованием системы Fmin.

Требования к допускам Fmin

Система измерения и определения допусков Fmin требует, чтобы дефекты, превышающие максимально допустимые отклонения, исправлялись путем их шлифовки. Требования к допуску Fmin для любой поверхности пола основаны на максимально допустимой скорости изменения на фут движения погрузчика в продольном направлении. Вы должны получить эту информацию у производителя вашего погрузчика.

Вот несколько примеров общих допусков Fmin:

  • 0.040 дюймов: Fmin100
  • 0,050 дюйма: Fmin80
  • 0,060 дюйма: Fmin65
  • 0,070 дюйма: Fmin55
  • 0,080 дюйма: Fmin50

Чем выше допуск Fmin, тем более плоский и ровный будет пол. Fmin100 — это наиболее распространенный допуск, а Fmin50 — самый низкий из используемых. Поскольку погрузчики снова и снова едут по одному и тому же маршруту, плавность движения колес в этих проходах чрезвычайно важна. В то время как суперплоские плиты укладываются узкими длинными полосами шириной примерно 15 футов, допуск в продольном и поперечном направлениях необходимо подтверждать только в колее колеса.

Допуск суперплоского Fmin100 основан на изменении на 1/8 дюйма по высоте от 10-футовой горизонтальной плоскости. Колеса погрузчиков VNA обычно находятся на расстоянии 5 футов друг от друга, что требует допуска на изменение высоты в 1/16 дюйма. Допуск изменен в соответствии с размерами погрузчика.

Общие ошибки спецификаций

Подрядчик должен знать спецификации суперплоского пола, которые на самом деле должны быть спецификациями случайного движения.Не везде суперплоские плиты одинаково плоские, и допуски определяются только в колесных колеях в одном направлении. Построение поверхности пола, которое обеспечивает допуск Fmin100 (определенное движение) во всех направлениях, чрезвычайно сложно и сравнимо с созданием поверхности, соответствующей допускам FF140 / FL100 (случайное движение). Если в эти измерения будут включены строительные швы, это будет еще сложнее.

Этажи телевизионных студий требуют такой спецификации, хотя эти этажи часто имеют завышение.Более реалистично, этажи с произвольным трафиком должны быть указаны с максимальным допуском FF70 / FL50.

Специалисты и подрядчики должны понимать, что F-100 и Fmin100 — это не одно и то же. Построить пол из F-100 значительно сложнее, и даже если подрядчик сможет его построить, он может не соответствовать требованиям владельца. Некоторые подрядчики, пытаясь сэкономить, строят перекрытия с более низким допуском случайного трафика, чтобы заменить допуск Fmin100, но это решение, как правило, является ошибкой.Лучшее решение — построить пол с меньшей устойчивостью к определенному движению транспорта.

Некоторые погрузчики VNA могут нормально работать на поверхности пола, имеющей размер менее 100 футов в минуту. Когда строительство суперплоских полов только начиналось, затраты и методы строительства были примерно одинаковыми для всех суперплоских полов. Это означало, что пол Fmin100 стоил не больше, чем пол Fmin60.

По мере того, как с годами подрядчики стали более осведомленными и опытными, они усовершенствовали свои методы и теперь могут создавать суперплоские полы с меньшими допусками по более низкой цене. Перед тем, как подрядчик подаст заявку на проект, он должен четко понимать, как будут определяться допуски суперплоских поверхностей. Они также должны быть знакомы с оборудованием, используемым для измерения допуска.

Имейте в виду, что необходимо подтверждать только площадь колеи в спецификации Fmin. С другой стороны, подтверждение толерантности к этажу с произвольным трафиком основывается на статистической информации и произвольных измерениях. Эта информация ничего не скажет вам о том, насколько хорошо погрузчик будет работать на заданном пути движения.

Применение суперплоского пола

Полы

Superflat используются во многих областях, в том числе:

  • Офисные здания
  • Стадионы
  • Гимназии
  • Катки
  • Производственные студии, в которых работают тележки
  • Распределительные и складские центры, где используются воздушные поддоны

Потребности в бетонировании полов Superflat могут различаться в зависимости от того, какое применение вы планируете использовать. У нас есть подразделение, которое специализируется на строительстве суперплоских полов.Мы используем самое передовое оборудование на рынке, в том числе новую лазерную стяжку Somero Laser Screed и самоходные затирочные машины Whiteman шириной 12 футов, которые позволяют нам заливать почти 80 000 квадратных футов за один день.

Вы также можете предпочесть экологически чистую компанию, которая стремится установить отраслевые стандарты, когда дело касается экологических требований. От нашей экологической гидравлической жидкости до наших передовых регенераторов бетона — мы стремимся найти решения, которые бережно относятся к матери-природе.В зависимости от вашего приложения это может быть важно для вашей компании.

Подтверждение допусков суперплоскости

Существует несколько инструментов для точного измерения минимального уровня случайного трафика. Однако не рекомендуется использовать эти инструменты для измерения минимального уровня трафика. Для заданных этажей вместо случайной выборки каждый путь движения необходимо измерять непосредственно с помощью профилометра этажа с непрерывной записью, который настроен так, чтобы идти точно по следам колес.

По мере того, как профилометр перемещается по траектории колес, он регистрирует как продольную, так и поперечную разницу в высоте колес. Результаты профилометра не дают F-числа, а просто подтверждают соответствие минимальным требованиям. Профилометр производит ленту, которая позволяет подрядчику узнать, находится ли поверхность «в пределах допуска» или нет. Он также определяет точное местоположение любых дефектов, чтобы подрядчик мог отшлифовать эти места до соблюдения допуска.

Были попытки измерить поверхности с заданным движением, используя оборудование, предназначенное для измерения поверхностей с произвольным движением. Однако это обычно не работает, потому что оборудование сначала должно независимо измерять информацию с каждой колесной колеи, что обычно приводит к множеству ошибок. И чем дальше измерительное оборудование уйдет от начальной точки, тем больше будет ошибок.

Представьте себе попытку определить и исправить местоположение, которое всего на несколько тысячных дюйма выходит за пределы допуска, но было измерено от начальной точки, расположенной на расстоянии нескольких сотен футов. Использование профилометра с непрерывной записью позволяет свести к минимуму ошибки, поскольку он измеряет разницу в высоте по мере движения по траектории.

Суперплоские полы против. Стандартные бетонные плиты

В то время как суперплоские полы требуются для сред с определенным движением, стандартные бетонные плиты приемлемы для помещений, где жесткие допуски не являются критичными. Стандартные бетонные плиты составляют подавляющее большинство бетонных плит в Соединенных Штатах и ​​обычно встречаются на производственных предприятиях, в больницах, складах, торговых центрах и школах.

Корректирующее шлифование

Создать суперплоский пол без изъянов невозможно. Спецификации Superflat должны разрешать использование шлифовальных машин для исправления мест, выходящих за пределы допуска. Однако корректирующее шлифование должно быть сведено к минимуму и требуется только на пути колеса погрузчика. Некоторые спецификации допускают максимальное измельчение до 15 процентов. Эти проценты основаны на длине проходов, а не на отдельных колесных колеях. Среднее количество измельчения составляет от 3% до 5%, при этом наиболее опытные подрядчики измельчают менее 2%.

Помимо опыта подрядчика, требуемое количество шлифования также зависит от условий работы и качества бетонных материалов. Области, которые необходимо отшлифовать, обычно крошечные и часто требуют удаления всего лишь от 0,010 до 0,020 дюйма.

Хотя эти дефекты могут быть очень маленькими, их можно легко идентифицировать, если использовать соответствующие методы измерения. Подрядчики могут избежать недоразумений, если спецификации будут записаны и правильно истолкованы.Подрядчик и разработчик должны быть знакомы с процедурами и стандартами. Независимо от того, насколько опытен подрядчик или спецификатор, они не смогут оправдать ожидания, если ожидания неверны.

Свяжитесь с Dynamic Concrete Pumping, Inc.

Dynamic Concrete Pumping Inc. — это компания по перекачке и укладке бетона из Калгари с более чем 40-летним опытом. Мы построили наш бизнес вокруг квалифицированного персонала и постоянно обновляем наше оборудование по мере совершенствования технологий.

Мы являемся частью сети предприятий, занимающихся покупкой и продажей подержанного оборудования. Мы постоянно обновляем оборудование для наших клиентов и продаем подержанное оборудование по разумным сниженным ценам. Если вам нужно арендовать или купить оборудование для этой отрасли, ознакомьтесь с некоторыми из наших выгодных предложений, и мы поможем вам сделать правильный выбор для вашего приложения.

У нас есть возможность возводить большие бетонные полы, и именно поэтому Walmart, Target, дистрибьюторы Gregg и подрядчики обращаются к нам со своими проектами.Если вам нужны наши услуги, свяжитесь с нами, заполнив нашу форму.

Детали конструкции кровельной мембраны

Быстрые ссылки:


Категории:

Сборочные иллюстрации
• Чертежи поперечного сечения системы крыши
Конструкция / компоновка ветрового подъема системы
• Схема ветрового подъема
Изоляционные приспособления
• Детали для механически прикрепленной или приклеенной изоляции
Легкий изоляционный бетон
• Различные детали в случае установки из легкого изолированного бетона.
Макеты листов
• Детали положения крепления
Состояние стен
• Облицовки и детали перекрытий на стенах
Состояние краев
• Детали окладов и фасадов на краях
Проходы
• Детали проема кровли
Forti-Lock ™ Жидкий гидроизоляционный слой
• Подробная информация о системе гидроизоляции жидкого ПММА
Расширительные соединения и стяжки
• Детальные чертежи стыков
Разное
• Проход, опорные листы, тройники, молниезащита, снегозащитный кожух
Индукционно сварные кровельные системы
• FTR-IW isoweld ® Детали для индукционной сварки
Fibe rTite Blue-Roof ™
• Детали временной защиты крыши
Имитация металлической кровли (ребра)
• Поперечное сечение и компоновка
FiberTite Hybrid ™
• Многослойные поперечные сечения и детали гидроизоляции для гибридных кровельных систем
FiberTite GREEN Roof
• Фибертит, растительный Детали кровельной системы


Сборочные иллюстрации

Название чертежа (№ чертежа) Скачать
Поперечное сечение композитной кровельной системы — система с механическим креплением (FTR-DMFS1) PDF | DWG
Поперечное сечение бетонной кровельной системы — система с механическим креплением (FTR-DMFS1a) PDF | DWG
Поперечное сечение деревянного настила системы крыши — система с механическим креплением (FTR-DMFS1b) PDF | DWG
Поперечное сечение композитной кровельной системы — приклеенная изоляция в асфальте (FTR-DAS1) PDF | DWG
Поперечное сечение композитной кровельной системы — приклеенная изоляция в клее FTR-601 (FTR-DAS2) PDF | DWG
Поперечное сечение композитной кровельной системы — с пароизоляцией (FTR-DAS2a) PDF | DWG
Поперечное сечение системы конической крыши — с накладкой (FTR-DAS2b) PDF | DWG
Поперечное сечение системы конической крыши — без защитной панели (FTR-DAS2c) PDF | DWG
Поперечное сечение композитной кровельной системы — изоляция с механическим креплением (FTR-DAS4) PDF | DWG
Поперечное сечение композитной кровельной системы — приклеенная изоляция в клее FTR-601 на стальном настиле (FTR-DAS10) PDF | DWG
Поперечное сечение кровельной системы — защитная плита с механическим креплением и приклеенная изоляция с пароизоляцией (FTR-DAS12SP) PDF | DWG
Поперечное сечение системы крыши — изоляция с механическим креплением и приклеиванием с пароизоляцией (FTR-DAS13SP) PDF | DWG
Поперечное сечение кровельной системы — защитная плита с механическим креплением и приклеенная изоляция (FTR-DAS16SP) PDF | DWG
Поперечное сечение кровельной системы — защитная плита с механическим креплением и приклеенная изоляция с пароизоляцией (FTR-DAS17SP) PDF | DWG
Поперечное сечение кровельной системы — изоляция с механическим креплением и приклеиванием с пароизоляцией (FTR-DAS18SP) PDF | DWG
Поперечное сечение композитной кровельной системы — система с балластом (FTR-DBS1) PDF | DWG

Проектирование / компоновка ветрового подъемника системы

Название чертежа (№ чертежа) Скачать
Макеты зон — наименьший горизонтальный размер больше 1. 2 ч, но менее 2,4 ч (FTR-ASCE7a) PDF | DWG
Схема зон — наименьший горизонтальный размер больше 2,4h (FTR-ASCE7b) PDF | DWG

Изоляционные детали

Название чертежа (№ чертежа) Скачать
Приставка для предварительной изоляции для системы FiberTite® 1-90 с механическим креплением (FTR-DI1) PDF | DWG
Предварительное крепление — 3/8 дюймовая плита из экструдированного полистирола с «разрезанной складкой» (FTR-DI5) PDF | DWG
Наклеенная система — изоляция с механическим креплением, толщина 2 дюйма или больше (FTR-DI2) PDF | DWG
Адгезионная система — изоляция с механическим креплением, толщина менее 1.5 дюймов (FTR-DI3) PDF | DWG
Наклеенная система — изоляция с механическим креплением, толщина от 1,5 до 1,9 дюйма (FTR-DI4) PDF | DWG
Схема крепления изоляции / облицовки (FTR-DI6) PDF | DWG
Применение изоляционного клея FTR 601 (FTR-D601) PDF | DWG
Класс 1-90 или меньше Изоляция M / A и приклеенная мембрана — поле, периметр и углы (FINS-90a) PDF | DWG
Изоляция M / A класса 1-90 и приклеенная полевая мембрана — с мембраной M / A по периметру и углам (FINS-90b) PDF | DWG

Легкий изоляционный бетон

Название чертежа (№ чертежа) Скачать
Бетонный настил с легким бетоном — поперечное сечение (FTR-LWC1) PDF | DWG
Рельефный компенсатор — легкий бетон (FTR-LWCEJ) PDF | DWG
Гидроизоляция водостока — легкий бетон (FTR-LWDF) PDF | DWG
Обшивка кромок — легкий бетон (FTR-LWE) PDF | DWG
Гидроизоляция труб, изготовленная на месте — легкий бетон (FTR-LWFPF) PDF | DWG
Облицовка желоба — легкий бетон (FTR-LWGE) PDF | DWG
Гидроизоляция предварительно отлитых труб — легкий бетон (FTR-LWPP) PDF | DWG
Гидроизоляция парапета — легкий бетон (FTR-LWPW) PDF | DWG
Гидроизоляция с приподнятой кромкой — легкий бетон (FTR-LWRE) PDF | DWG
Металлический настил из легкого бетона — поперечное сечение (FTR-LWS1) PDF | DWG
Гидроизоляция водостока — легкий бетон (FTR-LWSD) PDF | DWG

Макеты листов

Название чертежа (№ чертежа) Скачать
Пластины и крепежные детали большой винной бутылки FTR — стиль и положение внахлестку (FTR-DLAPa) PDF | DWG
Пластины FTR Magnum Plus и крепежные элементы Magnum — внахлест / размещение (FTR-DLAP4) PDF | DWG
Пластины и крепежные детали FTR Magnum-2S — внахлест / размещение (FTR-DLAP3) PDF | DWG
Класс 1-75 или ниже — Общая схема периметра и углов (FGL-75) PDF | DWG
Класс 1-90 или выше — Общий периметр и расположение углов (FGL-90) PDF | DWG
Навесное оборудование класса 1-90 — рулоны 74 дюйма с листами по периметру 37 дюймов (F74-RG90a) PDF | DWG
Приставка класса 1-90 — рулоны 74 дюйма с полосой по периметру (F74-RG90b) PDF | DWG
Приспособление класса 1–120 — рулоны 74 дюйма с листами по периметру 37 дюймов (F74-RG120a) PDF | DWG
Приставка класса 1–120 — рулоны 74 дюйма с полосой по периметру (F74-RG120b) PDF | DWG
Стандартные панели с выступами — приклад 74 дюйма (F74-SP1) PDF | DWG
Навесное оборудование класса 1-90 — рулоны 100 дюймов с рулонами периметра 50 дюймов (F100-RG90a) PDF | DWG
Приспособление для класса 1-90 — 100-дюймовые рулоны с защитной полосой по периметру (F100-RG90b) PDF | DWG
Приспособление класса 1-105 — рулоны 100 дюймов с роликами периметра 50 дюймов (F100-105a) PDF | DWG
Приспособление для класса 1-105 — 100-дюймовые рулоны с защитной полосой по периметру (F100-105b) PDF | DWG
Крепление системы крыши при переходе склона и изменении плоскости
(FTR-ST1)
PDF | DWG
Крепление кровельной системы при переходе склона и изменении плоскости — альтернативный вариант перекрытия мембраны (FTR-ST2) PDF | DWG

Условия стен

Название чертежа (№ чертежа) Скачать
Типичная «мембранная» обшивка стены — горизонтальная блокировка с пилой Reglet (FTR-DW1) PDF | DWG
Облицовка стены — (блокировка альтернативы 1) Т-образный ограничитель (FTR-DW1a) PDF | DWG
Обшивка стены — (блокировка альтернативы 2) Т-образный ограничитель (FTR-DW1b) PDF | DWG
Обшивка стены — (альтернативная блокировка) Ограничитель основания плиты и крепежа (FTR-DW1c) PDF | DWG
Типичный оклад металлической стены «плакированной» — горизонтальная блокировка с зазором для пропила (FTR-DW2) PDF | DWG
Типовая металлическая облицовка для стен (FTR-DW2i) PDF | DWG
Обшивка стен — альтернативное крепление «основания» (FTR-DW3) PDF | DWG
Обшивка стен — Альтернативное «базовое» крепление — Стандартная гарантия от ветра (FTR-DW3a) PDF | DWG
Облицовка стен — альтернативные клеммы (FTR-DW4) PDF | DWG
Настенная планка — с металлической заглушкой (FTR-DW5) PDF | DWG
Готовая колпачковая система FiberTite — коническая и неконическая (FTR-DW5a) PDF | DWG
Накладка на стену — несъемный колпачок (FTR-DW5b) PDF | DWG
Настенная планка — с металлической заглушкой (FTR-DW5c) PDF | DWG
Настенная планка — с металлической заглушкой (FTR-DW5d) PDF | DWG
Альтернативный колпачок / мигание (FTR-DW6) PDF | DWG
Настенная планка / промежуточное крепление (FTR-DW7) PDF | DWG

Граничные условия

Название чертежа (№ чертежа) Скачать
Типичная кромочная планка (FTR-DE1) PDF | DWG
Металлическая кромочная планка заводского изготовления из двух частей (FTR-DE2) PDF | DWG
Желоб желоба (FTR-DE3) PDF | DWG
FiberTite в системе фасции — стандартная кромка фасции (FTR-DE4 PDF | DWG
FiberTite в системе фасции — большая кромка фасции (FTR-DE4a) PDF | DWG
FiberTite в системе фасции — приподнятый скошенный край (FTR-DE5) PDF | DWG
Гидроизоляция «гравийной остановки» из металла FiberClad — система (и) балластной кровли (FTR-DE6) PDF | DWG
Гидроизоляция желоба — система (и) балластной кровли (FTR-DE7) PDF | DWG
Архитектурная металлическая фасция с металлической планкой FiberClad (FTR-DE8) PDF | DWG
Фассовая система FiberTite 200 — приподнятая кромка шипа (FTR-DE8a) PDF | DWG

Проникновения

Название чертежа (№ чертежа) Скачать
Обычный деревянный бордюр или световой лючок (FTR-DP1) PDF | DWG
Типичный деревянный бордюр или световой лючок (изометрический вид) (FTR-DP1i) PDF | DWG
Обычная деревянная или оконная планка бордюра — (альтернативная блокировка) Т-образный ограничитель (FTR-DP1a) PDF | DWG
Обычная деревянная или оконная планка бордюра — (альтернативная блокировка) Т-образный ограничитель (вид в изометрии) (FTR-DP1ai) PDF | DWG
Деревянный бордюр или световой лючок — (альтернативная блокировка) Т-образный ограничитель (FTR-DP1b) PDF | DWG
Деревянный бордюр или световой лючок — (альтернативная блокировка) Т-образный ограничитель (вид в изометрии) (FTR-DP1bi) PDF | DWG
Металлический бордюр с Т-образным ограничителем (FTR-Dp1c) PDF | DWG
Металлический бордюр с удерживающей пластиной Magnum (FTR-Dp1d) PDF | DWG
Изолированный бордюр или пожарный люк (FTR-DP2) PDF | DWG
Изолированный бордюрный / противопожарный люк — металлический счетчик мигания (FTR-DP2a) PDF | DWG
Люк доступа в крышу с опорной штангой (FTR-DP2b) PDF | DWG
Гидроизоляция предварительно отлитых труб (FTR-DP3) PDF | DWG
Профнастил для предварительно формованной трубы (вид в изометрии) (FTR-DP3i) PDF | DWG
Гидроизоляция труб на месте изготовления (FTR-DP4) PDF | DWG
Гидроизоляция труб, изготовленная на месте (вид в изометрии) (FTR-DP4i) PDF | DWG
Накладка поддона (условия использования см. В технических характеристиках FTR) (FTR-DP5) PDF | DWG
Подшивка поддона (вид в изометрии) (условия использования см. В технических характеристиках FTR) (FTR-DP5i) PDF | DWG
Стойка крыши (FTR-DP6) PDF | DWG
Обогреваемый оклад стопки — с металлической манжетой (FTR-DP7) PDF | DWG
Обогреваемый фартук — с металлической манжетой (вид в изометрии) (FTR-DP7i) PDF | DWG
Профнастил из предварительно формованной трубы — альтернативное ограничение основания (FTR-DP8) PDF | DWG
Профнастил из предварительно формованной трубы — альтернативное ограничение основания (вид в изометрии) (FTR-DP8i) PDF | DWG
Двутавровый фартук, изготовленный на месте (вид в изометрии) (FTR-DP9i) PDF | DWG
Гидроизоляционная труба квадратного сечения, изготовленная на месте (вид в изометрии) (FTR-DP10i) PDF | DWG
Изготовленный на месте квадратный угол железный оклад (изометрический вид) (FTR-DP11i) PDF | DWG
Предварительно формованная труба «Wrapid Flash» для проходки труб (FTR-DP12) PDF | DWG
Стандартная сливная планка (FTR-DD1) PDF | DWG
Типичный задел из шпателя (FTR-DD2) PDF | DWG
Scupper Thru Fascia (FTR-DD2a) PDF | DWG
Типовая дренажная планка — с мембраной из нетканого материала (FTR-DD3) PDF | DWG
Типовая армированная дренажная планка (FTR-DD4) PDF | DWG
Дренажная планка с минимальным уклоном (FTR-DD5) PDF | DWG

Жидкая пробивка Forti-Lock ™

Название чертежа (№ чертежа) Скачать
FTR Forti-Lock ™ Проникающая воронка из ПММА с жидким нанесением (FTR-FL1) PDF | DWG
FTR Forti-Lock ™ Проникающая втулка двутавровой балки из ПММА с жидким нанесением (FTR-FL2) PDF | DWG
FTR Forti-Lock ™ Проникающая прокладка из ПММА с жидким нанесением ПММА с С-каналом (FTR-FL3) PDF | DWG
FTR Forti-Lock ™ ПММА с рисунком двутавровой балки (FTR-FL4) PDF | DWG
Угловая опора FTR Forti-Lock ™ PMMA (FTR-FL5) PDF | DWG
Квадратная трубка / колонна, оканчивающаяся окантовкой с системой прокладки Forti-Lock ™ PMMA (FTR-FL6) PDF | DWG

Расширительные муфты и анкеры

Название чертежа (№ чертежа) Скачать
Низкопрофильный компенсатор (FTR-DX1) PDF | DWG
Поднятый компенсатор — блокировка по дереву (FTR-DX2) PDF | DWG
Поднятый компенсатор — над изоляцией (FTR-DX2a) PDF | DWG
Поднятый компенсатор — над изоляцией (балластная система) (FTR-DX2b) PDF | DWG
Горизонтально-вертикальный компенсатор (FTR-DX3) PDF | DWG
Альтернативный горизонтальный компенсатор вертикального расширения (FTR-DX3a) PDF | DWG
Накладка «Привязка» — к существующей системе (ам) крыши (FTR-DT1) PDF | DWG
Металлический гидроизоляционный элемент FiberClad «Привязка» — к существующей системе (ам) крыши (FTR-DT2) PDF | DWG
Временная (1-2 года) «привязка» — к существующей системе (ам) крыши (FTR-DT3) PDF | DWG
Временное «ночное уплотнение» — для существующей системы (систем) крыши (FTR-DT4) PDF | DWG
Крепление металлической планки FiberClad к кровельной системе (-ам) из гонтовой черепицы (FTR-DT5) PDF | DWG
Мембранная планка «Привязка» — к кровельной системе (ам) из черепицы (FTR-DT6) PDF | DWG

Разное

Название чертежа (№ чертежа) Скачать
Защитная подушка FTR и материалы прохода (FTR-DM1) PDF | DWG
Приставка для основного листа общего назначения (FTR-DM2) PDF | DWG
Молниезащита — приклеенная основа + полосы термической сварки (FTR-DM3) PDF | DWG
Молниезащита — приклеенная основа + приклеенные зажимы (FTR-DM3a) PDF | DWG
Кронштейн для молниеотвода — тип 1 (FTR-LRB1) PDF | DWG
Кронштейн для молниеотвода — тип 2 (FTR-LRB2) PDF | DWG
Кронштейн для молниеотвода — тип 3 (FTR-LRB3) PDF | DWG
Типовая крышка на Т-образных соединениях мембраны (Крышка Т-образного соединения) (FTR-TLAP) PDF | DWG
Snow Guard — Новая конструкция (FTR-SGNC) PDF | DWG
Snow Guard — дооснащение (FTR-SGRF) PDF | DWG

Системы FiberTite® с индукционной сваркой

Название чертежа (№ чертежа) Скачать
Пластина индукционной сварки FTR и крепежная деталь FTR — правильная установка (FTR-IWS1) PDF | DWG
Методы присоединения индукционной сварки — класс 1-90 и 1-135 (FTR-IWIA1) PDF | DWG
Поле индукционной сварки, периметр и угол — обозначения приспособлений (FTR-IWIA2) PDF | DWG
Поперечное сечение композитной крыши — система индукционной сварки (FTR-IWMF1) PDF | DWG
Система индукционной сварки с механическим креплением — модернизация металла (FTR-IWMR1) PDF | DWG
Приставка для индукционной сварки — схема для модернизации металла (FTR-IWMR3) PDF | DWG
Насадка для изоляции — для модернизации металла (FTR-MR2) PDF | DWG

FiberTite® Blue Roof ™

Название чертежа (№ чертежа) Скачать
FTR Blue Roof Temporary Roof (горизонтальные сварные швы) (FTR-TR1) PDF
FTR Синяя крыша Временная крыша (горизонтальные ленточные перехлесты) (FTR-TR2) PDF
FTR Синяя крыша Временная крыша (горизонтальные ленточные перехлесты) (FTR-TR3) PDF
FTR Синяя крыша Временная крыша (вертикальные поверхности) (FTR-TR4) PDF
FTR Синяя крыша Временная крыша (край крыши) (FTR-TR5) PDF
FTR Синяя крыша Временная крыша (проход трубы) (FTR-TR6) PDF
FTR Синяя крыша Временная крыша (окончание основания у проходов / стен) (FTR-TR7) PDF
FTR Blue Roof Temporary Roof (Горизонтальные клейкие ленты) (FTR-TR8) PDF
FTR Синяя крыша Временная крыша (горизонтальные ленточные перехлесты) (FTR-TR9) PDF
Временная крыша FTR Blue Roof (горизонтальные сварные швы) (FTR-TR10) PDF
FTR Синяя крыша Временная крыша (край крыши) (FTR-TR11) PDF
FTR Синяя крыша Временная крыша (окончание основания у проходов / стен) (FTR-TR12) PDF

Имитация металлической кровли

Название чертежа (№ чертежа) Скачать
Поперечное сечение композитной крыши — имитация металлического кровельного профиля (FTR-SMRP) PDF | DWG
Гидроизоляция гребней и долин — имитация металлического кровельного профиля (FTR-SMRP1) PDF | DWG
Соединение имитированного металлического профиля ребра — имитация профиля металлического ребра (FTR-SMRP2) PDF | DWG

FiberTite® Hybrid ™

Название чертежа (№ чертежа) Скачать
Поперечное сечение многослойной кровельной системы — приклеенная изоляция в асфальте (FTR-DAS1MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — приклеенная изоляция из клея FTR-601 с основанием SBS (FTR-DAS2MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — приклеенная изоляция в клее FTR-601 (FTR-DAS3MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — приклеенная мембрана и изоляция в асфальте — с приклеенной облицовкой из асфальта (FTR-DAS4MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — приклеенная мембрана и изоляция в асфальте с основанием SBS (FTR-DAS5MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — приклеенная мембрана и изоляция в клее FTR-601 с основанием SBS (FTR-DAS6MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — приклеенная мембрана и изоляция в клее FTR-601 (FTR-DAS7MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — приклеенная мембрана и изоляция в асфальте (FTR-DAS8MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — изоляция с механическим креплением (FTR-DAS9MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — защитная плита с механическим креплением и приклеенная изоляция с пароизоляцией (FTR-DAS10MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — изоляция с механическим креплением и приклеиванием с пароизоляцией (FTR-DAS11MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — защитная плита с механическим креплением и приклеенная изоляция (FTR-DAS14MP) PDF | DWG
Поперечное сечение многослойной кровельной системы — изоляция с механическим креплением и приклеиванием (FTR-DAS15MP) PDF | DWG
Типовая гидроизоляция многослойной трубы (FTR-DP3MP) PDF | DWG
Типичный многослойный шпатель (FTR-DD2MP) PDF | DWG
Типичное окончание основания многослойного бордюра — Т-образный ограничитель (FTR-DCB1MP) PDF | DWG
Типовая оконечность основания многослойной стены — Т-образный ограничитель (FTR-DWB1MP) PDF | DWG
Типовая оконечность основания многослойной стены — Т-образный ограничитель (для FTR Fleeceback) (FTR-DWB2MP) PDF | DWG
Типовая многослойная дренажная планка (FTR-DP3MP) PDF | DWG
Типовая многослойная гидроизоляция труб, изготовленная на месте (FTR-DP4MP) PDF | DWG

FiberTite® Зеленый

Название чертежа (№ чертежа) Скачать
Зеленая растительная кровля FiberTite — балласт в канализации с обрезным станком (FTG-DAED1) PDF | DWG
Зеленая растительная кровля FiberTite — 4. 5-дюймовый кромкообрезной станок для многослойного алюминия (FTG-DAEM1) PDF | DWG
Зеленая растительная кровля FiberTite — Балласт у стены с кромкообрезным станком (FTG-DAEW1) PDF | DWG
Зеленая растительная кровля FiberTite — Расширенная многослойная система (FTG-DEML1) PDF | DWG
Зеленая растительная кровля FiberTite — Стандартная многослойная система (FTG-DSML1) PDF | DWG
Зеленая растительная кровля FiberTite — Стандартная многослойная система с сеткой векторной картографии (FTG-DSML2) PDF | DWG
Зеленая растительная кровля FiberTite — система лотков FTGVRS с балластной скалой при проникновении (FTG-DTBP1) PDF | DWG
Зеленая растительная кровля FiberTite — Система лотков FTGVRS с балластной площадкой для камней (FTG-DTBW1) PDF | DWG
Зеленая растительная кровля FiberTite — Система лотков FTGVRS с дорожкой для бетоноукладчика (FTG-DTPW1) PDF | DWG
Зеленая растительная кровля FiberTite — Типовая система лотков FTGVRS (FTG-DTRAY1) PDF | DWG
Зеленая растительная крыша FiberTite — типичное соединение лотка FTGVRS (FTG-DTRAY3) PDF | DWG
Зеленая растительная кровля FiberTite — типовая компоновка лотка FTGVRS (балласт) (FTG-DTRAY-A) PDF | DWG
Зеленая растительная кровля FiberTite — типовая компоновка лотков FTGVRS (асфальтоукладчики) (FTG-DTRAY-B) PDF | DWG
Зеленая растительная кровельная система FiberTite — металлические кромочные профили и профили для обшивки стен (FTG-DTREFL1) PDF | DWG
Зеленая растительная кровля FiberTite — Схема ирригационной системы — Трубки (FTG-DTRIR1) PDF | DWG
Зеленая растительная кровля FiberTite — Схема ирригационной системы — Органы управления (FTG-DTRIR2) PDF | DWG
FiberTite Green Vegetated Roof System — Подключение ирригации к лотку (FTG-DTRIR3) PDF | DWG
Зеленая растительная кровля FiberTite — Коробка значений для орошения (FTG-DTRIR4) PDF | DWG
FiberTite Green Vegetated Roof System — Ирригационный коллектор (FTG-DTRIR5) PDF | DWG
Зеленая растительная кровля FiberTite — система лотков у стены (FTG-DTRW1) PDF | DWG
Зеленая растительная кровля FiberTite — система лотков с балластом у стены (FTG-DTRW2) PDF | DWG
Зеленая растительная кровля FiberTite — Балласт на сливе с поддоном FTVGRS (FTG-DTSD1) PDF | DWG
Зеленая растительная кровля FiberTite — балласт на окончании стены с сеткой векторной картографии (FTG-DVMW1) PDF | DWG
Зеленая растительная кровля FiberTite — оконцовка стены с сеткой векторной картографии (FTG-DVMW2) PDF | DWG

F-100 Super Sabre Масштабные модели

18 ноября 2004 г. я получил разрешение на строительство
строительство здания, в котором разместятся памятные вещи F-100,
библиотека F-100 и обширная коллекция моделей F-100.На рисунке 1 показано начало процесса клиринга.


Рис.1 Подготовка площадки

На рис. 2 показаны результаты работы по расчистке … мы подошли к
слой горной породы, и мы готовы к установке фундамента и строительной плиты.
Энн ищет еще несколько луковиц лесного гиацинта, которые мы можем использовать.
для озеленения после завершения строительства.


Рисунок 2 Завершенная клиринг

На рис. 3 показаны бетонный фундамент и плита здания.


Рисунок 3 Готовая бетонная плита здания

На рисунке 4 показана основная стальная конструкция здания F-100.
Как вы можете понять по размеру центральной балки, за которую я держусь.
к, это будет очень сильное здание. Мой четвероногий начальник,
Сисси Мэй, следит за тем, чтобы работа была сделана правильно.


Рисунок 4 Стальной каркас здания

Электропроводка в здании F-100 проходит через
субпанель… который подключен к главной панели дома через
65-футовый трубопровод. Строительный кодекс требует, чтобы проводка была
заключен в 3-дюймовый кабелепровод, который должен быть заглублен на глубину не менее 18 дюймов
вниз. Чтобы убедиться, что я соответствую требованиям, я убедился, что
имел некоторый запас прочности, поэтому я копал минимум на глубину 23
дюймов … сквозь слои породы и корней. Этот вид
для рытья требуется кувалда, чтобы разбивать камни, топор, чтобы рубить
Корни, сверхмощная кирка, чтобы вырвать сломанный камень и срезать корни
расслабленность и много упражнений, не говоря уже о терпении.Рисунок 5 показывает, что я все еще улыбаюсь … но я стою очень
холодная грязь.


Рисунок 5 Копание траншеи для кабелепровода

На рисунке 6 показана внутренняя часть здания F-100. Центральный
каналы кондиционирования и отопления хорошо изолированы …


Рисунок 6 Воздуховоды переменного тока / отопления

К 10 февраля 2005 г. внутренние отделочные работы прошли хорошо.
на пути к завершению.Как вы можете понять, посмотрев на
Рисунок 7: гипсокартон, отделка, потолочная сетка и
Электромонтажные работы выполнены. (Обратите внимание, что я включил два
из восьми потолочных светильников.)


Рисунок 7. (Почти) завершенный интерьер

Отделка интерьера завершена 9 марта 2005 г. Мы переместили
витрины, модели, картины в рамах и — большинство
главное — восстановленный воздухозаборник F-100, панель приборов,
и бум Пито в период с 10 марта 2005 г. по 12 марта 2005 г.На рисунке 8 показана базовая планировка юго-восточного угла холма.
дом 15-марта-2005.


Рис. 8 Завершенный интерьер после дня переезда

На рис. 9 показаны экспонаты в юго-восточном углу
здание на 1 августа 2006 года. Как видите, много дополнительных
реставрационные работы завершены и дисплеи более
тщательно организовано. Проверьте ссылку восстановления слева
сторону экрана, чтобы увидеть, что еще восстанавливается.Большой
проект строит фюзеляж «с нуля» … в основном,
Я закончу «макетом» в масштабе 1: 1 в качестве коллекции.
центральная часть. Это самое близкое к настоящему, что я смогу
получить.


Рисунок 9 Экспонаты Юго-Восточного угла

На рисунке 10 показан внешний вид здания. Ландшафтный дизайн
начинает окупаться. Добавляю еще цветущих кустов и
деревья для улучшения имиджа здания.


Рис.10 Здание F-100, вид со стороны подъездной дороги

Если вы хотите вернуться на главную страницу, вы можете либо щелкнуть
на

Дом

ссылка, показанная здесь или
нажав на

Дом

ссылка, отображаемая на панели навигации в левой части экрана.
(Вы всегда можете использовать любую из ссылок на панели навигации для перемещения
этот сайт.

Leave a reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *