Расчет теплые полы: Калькулятор для расчета водяного теплого пола онлайн

Содержание

Расчет теплого водяного пола – калькулятор для расчета мощности + Видео

Не хотите, чтобы батареи портили продуманный интерьер вашей гостиной? Есть много вариантов обогрева помещений, один из них теплый водный пол.Но чтобы он соответствовал названию, необходим тщательный расчет – разберемся, как его выполнить.

Расчет мощности теплого водяного пола – особенности технологии

Теплый водяной пол действительно может выполнять роль основного теплоносителя и обогревать помещения. И делать это даже эффективнее традиционных радиаторов – в случае с теплым полом прогревается весь воздух, тогда как радиаторы рождают конвекционные потоки, из-за чего температура в разных углах комнаты может быть разной. К достоинствам теплого пола помимо равномерного прогрева воздуха относится и отсутствие сухости воздуха, которая непременно возникает при использовании конвекторных радиаторов.

И все же полностью заменить батареи на теплый пол рискуют не многие, используя эту технологию как вспомогательную. В любом случае, максимальный предел температуры жидкости, которая курсирует по трубам, проложенным по периметру пола, может достигать отметки не выше 50°С. Такая температура не всегда бывает достаточной в действительно холодных регионах или же если помещение плохо утеплено, и теплый воздух уходит через окна, стены и потолок.

В теплых водяных полах правильный предварительный расчет – это уже полдела, однако именно калькулятор подводит многих строителей. Дело в том, что мало просто рассчитать длину трубы, опираясь сугубо на площадь комнаты. При обустройстве водяного пола с обогревом необходимо помнить о соблюдении обязательных условий:

  • Площадь обогрева одного контура может быть не более 20 квадратных метров. В больших помещениях прокладывается несколько контуров. Например, в зале площадью 60 кв. м нужно будет проложить 3 контура.
  • Подключение каждого контура происходит к отдельному отводу.
  • Длина контура не должна превышать 60 м.
  • В контуре линии не могут быть расположены дальше, чем на 30 см друг от друга.

Калькулятор тёплого пола

Укажите размеры пола.

Калькулятор водяного теплого пола – наглядный пример

На самом деле, самый надежный калькулятор в этом процессе  – наглядный расчет водяного теплого пола. Дело в том, что площадь, которая будет прогреваться, не всегда соответствует площади помещения. Так, трубы контура не рекомендуется прокладывать под тяжелой мебелью.

Если вы задаетесь вопросом, как рассчитать теплый водяной пол, запаситесь миллиметровой бумагой. На листе с разметкой нарисуйте план помещения с соблюдением удобного вам масштаба, например, один квадратик будет равен ½ метра. На бумаге вы сможете отметить зоны под мебелью, а также набросать рисунок контура.

Существует два варианта укладки труб под теплоноситель: змейка и спираль. В первом случае будет гораздо легче спроектировать расположение труб, однако учтите, что эффективность такой системы может быть под вопросом. Дело в том, что теплоноситель будет отдавать температуру по мере продвижения по контуру. Поскольку он расположен вдоль помещения, то ближайшая к началу контура часть будет всегда прогреваться лучше, чем более удаленная. В этом случае вы должны обязательно учитывать, какие участки комнаты будут менее эксплуатируемыми.

Спираль сложнее спроектировать, однако ее эффективность на порядок выше. От врезки труба направляется сразу к центру комнаты, а оттуда уже расходится по периметру. Спираль также более предпочтительна при использовании труб с большим радиусом изгиба. К слову, стоят они на порядок дешевле, чем более гибкие варианты.

Равномерность прогрева зависит от расстояния между линиями контура. Чем больше диаметр трубы, тем большая зона прогревается, однако мало кто использует трубы диаметром больше, чем 16 мм. В этом случае по сторонам от линии прогревается по 10 см поверхности. Чем больше диаметр, тем больше придется делать толщину пола.

На чертеже вы сможете с легкостью высчитать длину трубы и умножить на коэффициент масштаба. В любом случае, к полученному значению обязательно добавьте еще 2 метра – как показывает опыт, зачастую именно их не хватает для того, чтобы проложить абсолютно цельный контур.

Выбираем трубы – эффективно или экономно?

Помимо диаметра трубы, важно учесть и материал, из которого она изготовлена. Мы рассмотрим самые популярные варианты: медь, металлопластик, полипропилен и сшитый полиэтилен.

  • Медные трубы – самый лучший вариант для теплого пола, однако работать с ними могут только профессионалы, у которых есть нужное оборудование и навыки. Медь – очень долговечный материал, который обладает наивысшей теплопроводностью среди доступных металлов. Кроме того, медные трубы имеют оптимальный радиус изгиба. Существенным и по большому счету единственным недостатком этого варианта остается запредельно высокая цена, которую придется заплатить за материал и услуги специалистов.
  • Трубы из металлопластика – именно этот материал чаще всего используют для обустройства теплых полов. Действительно, у такой системы будет достаточно высокий КПД, она прослужит многие годы и не «съест» весь бюджет, заложенный на ремонт. Радиус изгиба позволяет прокладывать близко даже трубы с большим диаметром.
  • Полипропиленовые изделия – используются не чаще медных, но по причине слишком большого радиуса изгиба. Так, если диаметр трубы около 20 мм, то линии в контуре будут расположены не ближе, чем на 30 см друг от друга. Чего для прогрева, как мы уже выяснили, недостаточно. Выйти из положения можно двумя способами: проложив контур по спирали или используя специальные угловые соединители. Но чем больше соединений в контуре, тем выше вероятность утечки жидкости из системы.
  • У труб из сшитого полиэтилена достаточно хорошее качество. Высокая теплопроводность, длительный срок эксплуатации – что еще нужно? А нужно, чтобы труба не гнулась, что в случае со сшитым полиэтиленом является весомым недостатком. Исправить его можно, фиксируя трубы чаще, однако это увеличивает количество затраченного времени на прокладку пола.

Поход за покупками – что еще купить в строймагазине?

Само собой, в расчетах нужно будет учесть и дополнительные материалы, о которых сейчас и пойдет речь. Без них система потеряет большую часть эффективности. Чтобы тепло от труб целиком и полностью устремлялось вверх, обогревая воздух в помещении, следует изолировать его от контакта с холодным пространством под трубами. Для этого существует множество теплоизоляционных материалов. Экструдированный пенополистирол – вот наилучший вариант в этом случае. От обычного пенопласта он отличается долговечностью и монолитностью структуры. Кроме того, его укладка займет считанные минуты.

Поверх утеплителя укладывают гидроизоляцию – достаточно будет обычной полиэлитеновой пленки. Вдоль стен не забудьте проложить демпферную ленту. Это обязательная покупка, если вы хотите избежать растрескивания пола.

Не забывайте, что от воздействия тепла он будет расширяться. Демпферная лента нейтрализует внутреннее давление, которое возникает при расширении.

Арматура или готовая арматурная сетка – основа для крепления труб и бетонной стяжки. Проще всего приобрести готовые конструкции. Скобки для крепления труб – еще один обязательный элемент. Чем легче гнутся трубы, тем больше скобок придется купить.

Распределяющий коллектор – устройство, которое будет распределять теплоноситель по контурам. Если из-за большого периметра контур придется разбить на несколько частей, у коллектора должны быть регуляторы расхода. Дело в том, что при подаче нагретой жидкости в равных количествах по трубопроводам разной длины менее длинный будет греться сильнее, чем контур с большей протяженностью. Иногда вода может даже не проходить по более длинному трубопроводу из-за сильного сопротивления. Регуляторы в коллекторе позволяют экономно и эффективно распределять теплоноситель.

Смеситель – устройство, без которого невозможно обойтись в домах, где помимо теплого пола присутствует и традиционная система водного отопления. Как мы уже писали, в трубах под теплый пол температура не должна подниматься выше 50°С, что для радиаторов слишком мало. Поэтому вода на радиаторы подается при более высоких температурах, но в смесителе она разбавляется до необходимой температуры и расходится по теплому полу.

Оцените статью: Поделитесь с друзьями!

Как рассчитать теплый пол электрический

Электрический теплый пол имеет несомненные преимущества в плане комфорта и удобства. Те помещения, в которых оборудованы теплые полы, сразу становятся центром притяжения всех домочадцев, ведь по полу можно не только ходить, но сидеть и даже лежать на нем. Но прежде чем их монтировать и эксплуатировать следует узнать, как рассчитать теплый пол электрический самостоятельно либо обратиться за помощью к специалистам. В противном случае дорогостоящие нагревательные кабели и маты могут быть просто бесполезно замурованы в бетон без возможности их извлечения и восстановления.

Как рассчитать теплый пол электрический

Разновидности электрических теплых полов и их характеристики, учитываемые при расчетах

Главными деталями любых теплых полов являются нагревательные элементы или их сочетание. Они имеют различную конструкцию. Отметим особенность каждой системы.

Резистивный нагревающий кабель

Системы теплых полов на этой основе применяется чаще всего, так как он прост по конструкции и имеет более низкую, по сравнению с другими типами нагревателей цену. В его основе одно- или двухжильный проводник, заключенный в защитный экран и имеющий определенное сопротивление. По своей сути – это вытянутый нагревательный элемент, который при подключении к электрической сети вырабатывает определенное количество тепловой энергии. Резистивные кабели всегда имеют фиксированную длину, которую нельзя изменять ни в коем случае, так как это в корне меняет всю настройку системы. Любые попытки укоротить резистивный кабель уменьшают его сопротивление, увеличивается ток и это чаще всего приводит к выходу из строя.

Резистивные кабели — просты, надежны и неприхотливы

Основными характеристиками резистивных кабелей являются:

  • Конструкция кабеля (одножильный, двухжильный, зональный) и его назначение.
  • Напряжение питания и мощность. Обычно производители указывают два напряжения питания 220/230 вольт и соответствующую им мощность в Ваттах, например, греющий кабель deviflex™ DTIP−18, длиной в 22 метра имеет мощность 360/395 Ватт соответственно.
  • Очень важной характеристикой греющих кабелей является погонная мощность, то есть, сколько Ватт излучается одним метром. В вышеприведенном примере кабеля погонная мощность составляет 18 Вт/м при напряжении питания 230 В. Этот показатель указан в маркировке кабеля, но его можно и вычислить. Если мощность в 395 Вт поделить на длину в 22 метра, то получается 395/22=17,95 Вт/м.

Резистивные кабели производятся разной длины (7—220 м), различной погонной и общей мощностью, что вполне может удовлетворить все потребности. Естественно, что кабель надо укладывать по особой схеме, для охвата всей площади помещения, но об этом будет подробно рассказано в последующих разделах.

Нагревательные маты

Для удобства укладки были изобретены нагревательные маты, где греющий резистивный кабель вплетен в полимерную сетку и уже уложен с нужным шагом. Сетка обычно имеет клеевую основу и может приклеиваться к поверхности пола, что только добавляет удобства при монтаже. Особенно это хорошо при укладке плитки, когда маты скрываются прямо в слое плиточного клея или при ремонте, если делают только самовыравнивающую тонкую стяжку, на которую можно впоследствии настелить ламинат или ковролин. Большинство греющих матов выпускается шириной в 45 см и разной длины, что позволяет выбрать конкретную модель для любого помещения. При этом не стоит забывать, что в основе матов лежит резистивный, обычно двухжильный, кабель, поэтому отрезать маты по проводникам строго запрещено!

Нагревательные маты очень удобны в расчетах и монтаже

Основными характеристиками нагревательных матов являются:

  • Напряжение питания, которое обычно составляет 220/230 В и мощность нагревательного мата.
  • Длина мата и рекомендуемая площадь укладки, обычно от 0,5 м2 до 12 м2 при длине от 1 до 24 м.
  • Один из главных показателей – удельная мощность, то есть, какое количество тепла генерирует нагревательный мат на 1 метр квадратный. Измеряется она в Вт/м2 (Ваттах на метр квадратный). Для теплого пола обычно выпускаются маты с удельной мощностью 100—150 Вт/м2, очень редко 200 Вт/м2.

Саморегулирующийся нагревательный кабель

Основным недостатком резистивных кабелей и нагревательных матов на их основе является необходимость постоянного теплоотвода от них, так как от температуры окружающей среды практически не зависит их сопротивление и соответственно количество генерируемого тепла. Если от кабеля не отвести тепло, то он перегреется и выйдет из строя. Именно поэтому теплые полы резистивными кабелями нельзя оборудовать под стационарно стоящей мебелью без ножек.

Саморегулирующийся кабель в теплых полах применяется крайне редко

Такого недостатка лишен саморегулирующийся кабель, погонная мощность которого зависит от температуры. Греющим элементом является полупроводниковый полимер, способный менять свое сопротивление в зависимости от температуры. Такие кабели можно без страха отрезать любой длины, это не приведет к перегреву и выходу из строя. Однако, высокая цена ограничивает их применение в качестве теплых полов, поэтому их используют в основном для обогрева трубопроводов.

Пленочный инфракрасный теплый пол

Сравнительно новым видом подогрева полов являются инфракрасные (ИК) теплые полы, которые имеют в своей основе излучатели в виде поперечных графитовых полос, подключенных к продольным медно-серебряным проводникам. Вся конструкция располагается в полиэстеровой пленке, которая имеет толщину не более 0,4 мм. Особенностью пленочных полов является то, что большая часть генерируемой энергии приходится на лучевую составляющую — инфракрасные волны в диапазоне от 4 до 20 нм. Известно, что лучевое инфракрасное тепло нагревает не воздух, а окружающие предметы, а это воспринимается человеком очень комфортно.

Пленочный инфракрасный пол не любит «мокрых» процессов в строительстве

Основными характеристиками инфракрасных пленочных полов нужных в расчетах являются:

  • Напряжение питания 220/230 В и удельная потребляемая мощность, которая может составлять 130, 150, 170, 200, 230 Вт/м2, — в зависимости от помещения и его назначения.
  • Ширина рулона пленочного ИК пола: 0,5, 0,8 или 1 метр. Длина от 1 до 20 метров. Это позволяет «подогнать» пленку под любые помещения.

Пленочный пол также требует укладки только на ту площадь пола, которая не занята стационарной мебелью без ножек. Еще одним серьезным ограничением применения является невозможность укладки в стяжку, так как ИК пленки не «любят» мокрых процессов в строительстве. Лучшее применение для таких нагревателей – это укладка «сухим» способом на абсолютно ровные поверхности с последующим настилом ламината, предназначенного для теплого пола, линолеума или ковролина.

Стержневой инфракрасный теплый пол

Самой инновационной и современной системой теплого пола являются стержневые инфракрасные полы, где применяются в качестве нагревателей гибкие элементы из композиции карбона, графита и серебра. Такие стержни имеют очень полезные свойства – при повышении температуры пола от 20 до 60°C их пиковая потребляемая мощность уменьшается в 1,5 раза. Это позволяет использовать подогрев пола даже там, где будет стационарно расположена мебель, которую можно периодически переставлять.

Стержневые инфракрасные маты — самое современное решение в подогреве полов

Греющие стержни параллельно подключены к продольным медным проводникам, образуя греющий мат. Даже если какой-то один из них выйдет из строя, то другие продолжат работу. Ширина мата 83 см, шаг между стержнями может составлять 9 или 10 см. Главными характеристиками ИК стержневого пола являются:

  • Пиковая потребляемая мощность, которая может измеряться или Вт/м2или Вт/м. Она может составлять или 130, или 160 Вт/м2 при погонной мощности 116 или 138 Вт/м соответственно. Эти данные приведены для системы UNIMAT RAIL или UNIMAT BOOST.
  • Минимальная и максимальная длина термомата – от 0,5 до 25 метров.
  • Длина волны ИК излучения: 8—14 мкм.
  • Напряжение питания 220/230 В.

Стержневой ИК теплый пол предназначен для монтажа в основном в тонкие — 2—3 см стяжки и в слой плиточного клея. Его новизна, технологичность и замечательные характеристики определяют и высокие цены, поэтому и применяется такой теплый пол пока достаточно редко.

Цены на различные виды электрических теплых полов

Электрический теплый пол

Варианты применения теплых электрических полов

Специалисты-теплотехники и производители нагревательных электрических систем теплого пола рекомендуют использовать кабельное отопление в двух основных режимах:

  • Кабельную систему отопления устанавливают в бетонную стяжку, толщиной не менее 3—5 см с возможностью ее использования в качестве полного отопления, без применения дополнительных обогревательных приборов. В этом случае электрическое отопление может компенсировать все теплопотери и поддерживать нужную температуру воздуха в помещениях. Еще одним вариантом является применение кабельного отопления в термоаккумулирующих толстых бетонных полах (10—15 см), когда во время действия сниженных тарифов на электроэнергию идет нагрев пола, а в остальное время за счет большой тепловой инерции массивной стяжки, тепло отдается в помещение.

Кабельные системы обогрева могут применяться в массивных термоаккумулирующих бетонных стяжках

  • Систему отопления в виде электрических нагревательных кабелей, матов, трубчатых нагревателей или инфракрасных пленочных полов используют в основном только для поддержания комфортной температуры поверхности пола. При этом теплые полы работают совместно с основной системой отопления, которая компенсирует львиную долю теплопотерь квартиры или дома. Для этого применяют нагревательные кабели и маты, монтируемые прямо в слой плиточного клея или в воздушный зазор деревянных полов, а также инфракрасные пленочные полы, укладываемые прямо под покрытие.

Расчет тепловых потерь здания или помещений

При проектировании любой системы отопления, в том числе и электрического теплого пола в качестве основного, весьма желательно рассчитать теплопотери каждого помещения в квартире или в доме. В этих расчетах исходными данными являются:

  • Заданная температура в каждом помещении и их взаимное расположение.
  • Географическое положение.
  • Конструкция стен: какие материалы, какой толщины применены в стенах, какие именно стены являются наружными.
  • Конструкция пола и потолка.
  • Наличие и площадь окон, их конструкция и теплопотери через них.
  • Ориентация здания по сторонам света.
  • Наружная температура воздуха (с учетом самых холодных температур года).
  • Потери тепла через вентиляцию.

Все вышеперечисленное является далеко не полным списком исходных данных для оценки теплопотерь. Эти расчеты делают специалисты-теплотехники, но существует множество специальных бесплатных программ или онлайн-расчетов в интернете, поэтому каждый может произвести оценку самостоятельно. Главной задачей этих расчетов является то, что любая система отопления должна полностью компенсировать все тепловые потери, даже с учетом самых холодных зимних дней.

Теплопотери зданий или помещений очень удобно рассчитывать при помощи специальных программ

Из анализа статистических данных о теплопотерях множества домов и квартир можно сказать о том, что в большинстве современных квартир и домов, построенных с учетом требований по теплозащите, удельная мощность отопления на квадратный метр площади должна составлять 100—130 Вт/м2 для всех помещений, а в ванных и санузлах 130—150 Вт/м2. В старых домах удельная мощность может доходить до 180 Вт/м2 и в этом случае уже не обойтись без других источников тепла.

Обоснованность применения теплоизоляции в системах теплых электрических полов

Утепление конструктивных элементов здания в дальнейшем будет сильно влиять на комфорт в помещениях и значительно снизит расходы на отопление. И одним из главных является утепление конструкции пола. Электрические теплые полы могут монтироваться непосредственно под напольное покрытие как с применением различных тонких утеплителей, так и без них, что является чаще всего вынужденной мерой – когда невозможно пожертвовать высотой помещения.

Потери тепла через какую-либо ограждающую конструкцию происходят тем интенсивнее, чем больше разница температур и меньше термическое сопротивление. Даже если в соседних помещениях между этажами будут одинаковые температуры, тепло все равно неизбежно будет передаваться бетонной плите пола. Поэтому, если есть возможность, то надо использовать утеплители и чем они толще – тем лучше. Приведенная диаграмма наглядно демонстрирует это.

Применение теплоизоляции повышает эффективность теплых электрических полов

Если система электрический теплый пол будет использоваться как основное отопление в виде термоаккумулирующего пола, то применение утеплителей обязательно, так как мощностей нагревательных кабелей и матов будет просто недостаточно для компенсации теплопотерь.

Как рассчитать теплый пол электрический

После того как получено представление об основных системах электрического теплого пола и их характеристиках, можно приступать к расчету.

Составление плана помещения и вычисление отапливаемой площади

Прежде чем переходить к расчетам и выбору комплектующих, желательно начертить план каждого отдельного помещения квартиры или дома в удобном масштабе на миллиметровой бумаге формата А3 или в компьютерной программе.

Пример самостоятельно нарисованного помещения с расстановкой мебели и схемой укладки кабельного теплого пола

После этого вычисляется общая площадь помещения – Sобщ. Далее, на том же плане делается расстановка всей стационарной мебели без ножек и высчитывается площадь, занимаемая мебелью – Sмеб. Теперь можно получить площадь, на которую будет укладываться электрический теплый пол – Sу:

Sу=Sобщ— Sмеб.

Желательно, чтобы отапливаемая площадь занимала не менее 50% от общей площади помещения, а лучше 70—80%, то есть должно соблюдаться условие:

Sу*100%/Sобщ≥50%.

Если в качестве отопительных приборов будут использованы стержневые ИК полы, то их можно укладывать по всей площади, то есть:

Sу=Sобщ.

Приведем пример. Есть кухня общей площадью 12 м2, а площадь занятая мебелью и оборудованием 5 м2, значит: Sу=12—5=7 м2.

Расчет установленной и удельной мощности электрического отопления

При расчетах электрических теплых полов обязательно надо вычислить установленную мощность, называемую еще присоединенной мощностью, того электронагревательного элемента, который будет обогревать пол. Как это можно сделать?

Использование теплого пола в качестве основного отопления

Если электрический теплый пол будет использоваться как основная система отопления, то установленная мощность Pуст должна быть, по крайней мере, не меньше мощности теплопотерь в этом помещении Pп, которые получают в процессе теплотехнических расчетов. Специалисты рекомендуют установленную мощность вычислять с запасом в 30%:

Pуст=1.3* Pп.

Если нагревательный кабель будет проложен в термоаккумулирующей стяжке, то коэффициент запаса следует применять 1,4:

Pуст=1.4* Pп.

Например, в вышеописанной кухне теплопотери составляют 1000 Вт, значит, для их компенсации с учетом запаса понадобится обогреватель с установленной мощностью: Pуст=1.3*1000 Вт=1300 Вт, а в случае с термоаккумулирующими полами Pуст=1.4*1000 Вт=1400 Вт.

Удельную мощность Pуд можно определить как отношение устанавливаемой мощности к обогреваемой площади:

Pуд=Pуст/Sу.

В нашем примере: Pуд=1300 Вт/7=186 Вт/мили для аккумулирующих полов — Pуд=1400 Вт/7=200 Вт/м2.

Использование теплого пола в качестве комфортного подогрева

В этом случае подразумевается, что теплые полы созданы для комфорта, а компенсацию теплопотерь осуществляет основная система отопления. Расчет установленной мощности производят от удельной, которая прописана в нормативах и рекомендациях производителей теплых полов. Данные о требованиях к удельной мощности в зависимости от вида помещения сведены в следующую таблицу.

Сводная таблица требований к удельной и погонной мощности в зависимости от назначения помещения и вида отопления

В этом случае надо выбранную из таблицы удельную мощность умножить на отапливаемую (устанавливаемую) площадь:

Pуст=Pуд*Sу.

В нашем примере кухни для создания теплого комфортного пола выбираем Pуд=100 Вт/м2, а отапливаемая площадь Sу=7м2 получаем: Pуст=100*7=700 Вт.

Выбор и расчет нагревательных элементов теплого пола

После определения необходимой установленной мощности электрического теплого пола необходимо определиться с тем, какие нагреватели наиболее целесообразно использовать в каждом конкретном случае. Для основного отопления следует применять резистивные кабели, а для комфорта: нагревательные маты, пленочные или стержневые ИК полы. Рассмотрим особенности выбора.

Выбор резистивного греющего кабеля и определение шага укладки

Рассмотрим такой выбор на нашем примере отопления кухни с использованием ассортимента греющих кабелей deviflex™ компании Devi. Методика выбора совершенно одинакова для всех резистивных кабелей всех производителей.

Допустим, что запланирована термоаккумулирующая стяжка в качестве основного источника тепла. Ранее было выяснено, что установленная мощность должна быть не менее Pуст=1400 Вт. Из вышеприведенной таблицы видно, что кабели должны применяться с погонной мощностью 18—20 Вт/м, в ассортименте компании Devi есть кабели deviflex™ DSIG−20 (20 Вт/м при 230 В), которые лучше подходят для решения поставленной задачи.

Ассортимент греющих резистивных кабелей deviflex™ DSIG−20

Из предложенного перечня следует выбирать кабель, мощность которого не меньше установленной мощности. Этому требованию подходит кабель с мощностью 1465 Вт при 230 В и длиной в 74 метра: Lкаб=74 м.

Для греющих кабелей существует очень важный параметр – шаг укладки (h), — расстояние между линиями кабеля в укладке. Он измеряется в сантиметрах. Для его нахождения следует обогреваемую площадь в квадратных метрах Sу умножить на 100 и поделить на длину кабеля в метрах Lкаб:

h= Sу*100/ Lкаб.

Наглядное представление шага укладки

В рассмотренном примере h=7*100/74=9,46 см. Часто при укладке используют специальную монтажную ленту, сильно упрощающей монтаж. Шаг крепления кабеля на монтажной ленте составляет 2,5 см. Ближайшее значение 10 см, которое и нужно использовать. Если шаг укладки будет лежать где-то посередине диапазона, то можно чередовать соседние петли теплого пола с шагами 7,5 и 10 см.

Расчет резистивного кабеля для комфортного обогрева пола осуществляется по той же методике. Напомним ее пошагово.

  • Исходя из требований к удельной и погонной мощности, типа помещения и вида отопления (полное или комфортное) выбирается у какого-либо производителя тип кабеля, отвечающий всем условиям.
  • Исходя из ранее рассчитанной установленной мощности, выбирается конкретный кабель, мощность которого не меньше установленной.
  • Исходя из отапливаемой площади помещения и длины выбранного кабеля, рассчитывается шаг укладки.

На этом этапе может сильно пригодиться план помещения, нарисованный на миллиметровой бумаге. Можно карандашом нарисовать различные варианты укладки греющего кабеля, а потом выбрать оптимальный.

Калькуляторы расчета длины нагревательного кабеля и шага его укладки

Предлагаем читателю воспользоваться встроенным калькулятором — он быстро и точно подсчитает  и длину требуемого кабеля, и шаг укладки:

Перейти к расчётам

По полученному значению  выбирается нужный комплект с длиной кабеля, наиболее близкой к найденному показателю. Теперь осталось только рассчитать шаг укладки:

Перейти к расчётам

Выбор и расчет греющего мата

Греющие маты в теплых полах используются в основном как дополнительное или комфортное отопление, монтируемое в тонких бетонных стяжках или слое плиточного клея. Выбор нужного мата сильно упрощается, так у производителей представлен широкий ассортимент таких нагревателей. Рассмотрим на нашем примере.

Для комфортного обогрева пола кухни ранее было установлено, что достаточно удельной мощности Pуд=100 Вт/м2. На отапливаемой площади в 7 м2 установленная мощность будет Pуст=700 Вт. Из ассортимента компании Devi выбираем греющие маты devimat™ DТVF−100 (100 Вт/м2).

Ассортимент греющих матов devimat™ DТVF−100

Для наших целей как нельзя лучше подходит греющий мат нужной площади в 7 м2. Расчета шага укладки греющие маты не требуют, так как на них уже закреплен кабель с нужным шагом. Но при укладке в помещениях, особенно сложной конфигурации, возникают некоторые нюансы.

Для того чтобы уложить греющий мат в помещениях существуют определенные приемы, которые позволят сделать это. Главное правило – можно разрезать только полимерную сетку, но не сам кабель! Приемы укладки наглядно представлены на рисунке.

Греющие маты можно уложить в любом помещении, даже самой сложной конфигурации

Очевидно, что выбор и расчет греющего мата для отопления пола гораздо проще, чем резистивного кабеля. Для выбора тактики правильной укладки поможет план на миллиметровой бумаге. Здесь как нельзя лучше подходит пословица: «Семь раз отмерь и один раз отрежь!»

Особенности расчетов инфракрасных пленочных полов

Пленочные теплые полы имеют ряд особенностей, которые требуют грамотного подхода.

  • Во-первых, они, как и резистивный кабель должны укладываться только на свободном от мебели месте.
  • Во-вторых, минимальная дистанция от пленки до краев (стен или стационарной мебели) должна составлять 20 см.
  • В-третьих, пленочные полы могут укладываться только «сухим» способом под подходящие для этого покрытия (ламинат, линолеум, ковролин). Хоть и существуют технологии укладки плитки на пленочные полы, но это предполагает наличие промежуточного гидроизолирующего слоя. В итоге стоимость теплого пола с ИК пленками будет гораздо выше, чем с резистивными кабелями или матами.
  • В-четвертых, пленочные полы могут резаться с определенной кратностью – чаще всего 25 см. Это не повлияет на удельную мощность.
  • И, наконец, кажущаяся легкость расчета и особенно монтажа пленочного пола обманчива. Под поверхностью ИК пола находится масса электрических соединений, которые требуют только высококвалифицированного монтажа.
Видео: Квалифицированный монтаж пленочного инфракрасного пола

Для правильного расчета пленочного пола необходимо выполнить ряд шагов:

  • Рассчитывается площадь обогрева помещения. Для этого на листе миллиметровой бумаги вычерчивается план, «расставляется» стационарная мебель и учитываются минимальные 20 см отступы от границ. В итоге должна получиться обогреваемая площадь — Sу, допустим, что в конкретном примере Sу=15 м2, а общая площадь 24.
  • Высчитывается доля обогреваемой площади в общей площади помещения: Sу*100%/Sобщ=15 м2*100%/24 м2=62,5%. Если этот показатель более 60% (как в нашем случае), то удельная мощность обогревательных ИК пленок может быть от 160 до 220 Вт/м2. Если же доля обогреваемой площади менее 60%, то Pуд=220 Вт/м2. Для нашего случая выбираем Pуд=160 Вт/м2.
  • Для помещений, имеющих большие теплопотери через пол: первые этажи, помещения над арками, дома старой застройки с полами без теплоизоляции, — в любом случае Pуд=220 Вт/м2.
  • Рассчитывается установленная мощность теплого пола. Для этого удельную мощность перемножают с обогреваемой площадью: Pуст=Pуд* Sу=160 Вт/м2*15 м2=2400 Вт.
  • Из ассортимента любого производителя ИК пленок выбираются с заданной удельной мощностью нужной длины и ширины, которые могут покрыть полностью всю обогреваемую площадь. Нужно учесть, что ширина рулонов пленок 50, 80 и 100 см, а кратность резки пленки – через каждые 25 см. При этом существуют ограничения, представленные в таблице. При этом лучше не выбирать максимальную длину, а набирать меньшими отрезками. Главное правило — меньшее количество отдельных пленок (план на миллиметровой бумаге будет большим подспорьем).

Максимальная длина отрезка инфракрасной пленки в зависимости от ширины

  • На каждый отдельный отрезок пленки подбирается соединительный комплект, а на весь комплект – терморегулятор, рекомендованный производителем.

Особенности расчетов стержневых инфракрасных полов

Главной отличительной чертой стержневых ИК полов является то, что они саморегулирующиеся, то есть при повышении наружной температуры их пиковая мощность снижается примерно в 1,5 раза. Это позволяет применять их на всей площади помещения, независимо от положения мебели. Для расчета стержневых теплых полов воспользуемся предыдущим примером комнаты с Sобщ=24 м2 и рассчитаем их для всей площади: Sу=Sобщ=24 м2.

  • Для комфортного обогрева пола выбирается система теплых стержневых ИК полов UNIMAT RAIL, имеющая пиковую погонную мощность 116 Вт/м. Ширина мата равна 83 см, они укладываются с интервалом до 10 см, поэтому их длина выбирается исходя из требуемой обогреваемой площади.
  • Из ассортимента UNIMAT RAIL выбирается комплект UNIMAT HR-S-2500, длиной в 25 метров, пиковой мощностью 2900 Вт, способный отопить площадь до 25 м2.
  • На плане помещения, предварительно нарисованным на миллиметровой бумаге, делается раскладка нагревательных матов. Причем силовые кабели могут разрезаться в любом месте посередине между нагревательными стержнями. Нагревательные стержни разрезать нельзя.

Пример раскладки стержневых инфракрасных нагревательных матов со схемой подключения

  • Определяется количество дополнительных комплектующих.
  • Выбирается терморегулятор, рекомендованный производителем.

Требования к напольному покрытию при эксплуатации теплых электрических полов

При проектировании электрической системы обогрева полов зачастую забывают о том, что с ней могут работать далеко не все покрытия. И к этому вопросу надо отнестись со всей внимательностью и серьезностью. С какими покрытиями работа теплых электрических полов противопоказана:

  • Линолеум на резиновой или войлочной основе.
  • Толстые ковры или ковры на резиновой основе.
  • Дощатый пол толщиной более 25 мм.

При выборе линолеума, ламината, паркетной доски или ковролина следует обязательно поинтересоваться, могут ли работать эти покрытия с системой теплых полов. Ведущие производители указывают это всегда на маркировке и в сопроводительной документации.

Такими значками обозначаются напольные покрытия, способные работать с теплым полом

Для контроля отопления деревянных полов, а также тонких полов рекомендуется использовать терморегуляторы с двумя датчиками: температуры поверхности пола и воздуха в помещении. Если известно термическое сопротивление напольного покрытия RT, которое может быть указано в документации, то лучше руководствоваться следующими правилами:

  • При удельной мощности 150 Вт/м2 максимальное термическое сопротивление(RTmax) может быть до 0,13 м2*K/Вт.
  • При Pуд=125 Вт/м2 – RTmaxне более 0,16 м2*K/Вт.
  • При Pуд=100 Вт/м2 – RTmaxне более 0,18 м2*K/Вт.

Если в конструкции пола применяются многослойные покрытия, например – ламинат с подложкой, то их термические сопротивления складываются, и проверяется соответствие вышеперечисленным условиям.

Расчет электрической системы теплого пола

При самостоятельном проектировании системы электрических теплых полов иногда забывают о том, что не всякая электропроводка выдержит нагрузки от мощного потребителя энергии. Вдобавок не всякая энергоснабжающая организация выдаст технические условия на выделение требуемой мощности. Именно поэтому проект электроснабжения и получение всей разрешительной документации необходимо доверить профессионалам, а сосредоточиться только на том, что по силам сделать самому.

Выбор терморегулятора

Сердцем системы теплых полов является терморегулятор, который следит за температурой поверхности или воздуха, или за тем и другим одновременно, — и на основании этого производит включение или отключение контуров обогрева. Кроме этого, терморегулятор может иметь встроенный таймер и включать обогрев в назначенное время или иметь программу включения в определенные дни недели и часы. В терморегуляторах бывают еще и другие полезные и бесполезные функции. При его выборе, прежде всего надо руководствоваться набором правил:

Без терморегулятора немыслима работа электрического теплого пола

  • Каждый производитель любой системы теплых полов всегда рекомендует определенные модели терморегуляторов и работающих с ними датчиков. Лучше этими рекомендациями не пренебрегать.
  • Все терморегуляторы могут работать только с определенным током нагрузки: 10 A– для обогревателей с установленной мощностью до 2300 Вт, и 16 Aс Pуст≥2300 Вт. Именно по этим показателям прежде всего и надо выбирать терморегулятор.
  • Если планируется использовать систему теплый пол только для комфорта, то нужно выбирать терморегулятор с датчиком температуры пола.
  • Если теплый пол используется в целях полного отопления, то необходимо использовать терморегулятор с датчиком температуры воздуха или с комбинацией датчиков температуры пола и воздуха.
  • Для работы систем отопления с деревянным покрытием обязательно использовать терморегуляторы с комбинацией датчиков температуры воздуха и пола.
  • Если в близлежащих помещениях тоже планируется система электрических теплых полов, то целесообразно использовать многозональный терморегулятор с выносными датчиками.

Цены на различные модели терморегуляторов

Терморегулятор

Общие правила проектирования электропроводки теплого пола

При проектировании электропроводки теплого пола следует обязательно учесть несколько правил:

  • Все соединения кабелей системы теплый пол между собой и с электропроводкой должны выполняться только на специальных клеммах, на контактах терморегуляторов, в распределительных коробках и электрических щитах. Следует избегать любых соединений в конструкции пола кроме тех, что неизбежны, и рекомендованы производителем.
  • Экраны нагревательных кабелей и матов должны соединяться с проводом защитного заземления (PE) и должны быть включены в общую систему уравнивания потенциалов – СУП.
  • Питающие провода и кабели должны быть площадью поперечного сечения не меньше, чем подводящие «холодные» концы нагревателей теплого пола. При установленной мощности до 2300 Вт площадь поперечного сечения медного провода должна быть 1,5 мм2, а свыше 2300 Вт – 2,5 мм2.
  • Для защиты человека от поражения электрическим током обязательно применение устройств защитного отключения (УЗО) с дифференциальным током срабатывания не более 30 мА, а для санузлов – 10 мА. Не менее 1 раза в месяц необходимо проводить испытание УЗО.

Без УЗО эксплуатация электрических теплых полов запрещена

  • Проводка для питания системы электрического теплого пола должна быть проложена непосредственно от электрощитов или вводно-распределительных устройств (ВРУ) до терморегуляторов. При этом в щитах для защиты проводки обязательно должны стоять автоматические выключатели: для медных кабелей с площадью поперечного сечения 1,5 мм2 номиналом в 10 A, а для 2,5 мм2– 16 A.
  • Если нагревательные элементы теплого пола укладываются на металлическую сетку, то она обязательно должна быть подключена к общей системе уравнивания потенциалов.

Итоги

  • Рассчитать теплый пол электрический вполне по силам самостоятельно, пользуясь рекомендациями производителя оборудования.
  • Электрический теплый пол является системой повышенной опасности, поэтому при проектировании и монтаже обязательно руководствоваться Правилами устройства электроустановок последней редакции.
Видео — Какие расчеты необходимы перед устройством теплого пола

Энергопотребление теплого пола

Каждый, кто задумывается об установке теплого пола в своём помещении, беспокоится и переживает о том, насколько это выгодно и с какими затратами сопряжена эксплуатация такого вида обогрева.

Прежде чем отправиться на поиски ответа на этот вопрос, определитесь, как именно вы будете использовать систему теплого пола — для полноценного отопления или лишь для поддержания комфорта? Ведь потребление электроэнергии непосредственно зависит от мощности, на которой будет работать система.

Что влияет на энергопотребление?

Для выбора максимально экономичного и разумного варианта компоновки и эксплуатации тёплого пола обратите внимание на следующие факторы:

  • тепловые потери помещения, качество теплоизоляции стен, потолка и пола;
  • климатические особенности региона;
  • тип напольного покрытия (например, кафельная плитка придаёт дополнительное ощущение холода). Статья про плюсы и минусы разных напольных покрытий;
  • количество человек и примерное время их нахождения в помещении.

Теперь непосредственно о расходе электроэнергии системами тёплого пола. Для того, чтоб просто поддерживать комфорт в помещении требуется от 110 до 160 ватт/час на квадратный метр нагревательного элемента. При использовании для основного вида обогрева потребление электричества возрастает до 200 ватт/час на квадратный метр.

Для достижения максимальной экономичности лучше всего установить программируемый терморегулятор. Это позволит включать тёплый пол только в то время суток, когда необходимо, а при достижении требуемой температуры — снижать мощность. Производится это путём периодического включения-выключения нагревательных элементов. Прочтите, как выбрать терморегулятор?

Сколько потребляет теплый пол. Расход электроэнергии теплого пола. Caleo

Watch this video on YouTube

Для максимальной эффективности стоит обратить внимание на утепление пола и уменьшение утечек тепла вниз, к земле. Это позволит уменьшить время выхода системы на заданную температуру, а так же задержать тепло в помещении на более длительное время. Таким образом время, на протяжении которого тёплый пол будет во включённом состоянии будет меньше, а значит уменьшится и потребление электричества.

Поделиться

Твитнуть

Запинить

Нравится

Класс

WhatsApp

Viber

Телеграмка

Расчет размеров и площади теплого пола

 

Теплый пол является частью инженерного оснащения квартиры, так же как отопление, водо- и электроснабжение. Для того чтобы каждая из этих систем функционировала эффективно, важно не только правильно установить оборудование, но прежде всего выбрать подходящий для конкретных целей тип и рассчитать нагрузки.

В этой статье мы рассказываем о том, как рассчитать параметры теплого пола.

В качестве примера рассмотрим стандартный совмещенный санузел в обычной квартире жилого дома, 2*2,6 м с бетонным черновым полом (может быть старая плитка). Задача — уложить новое покрытие с подогревом, плитку или керамогранит.

Первое, на что следует обратить внимание — что находится внизу. Если такая же квартира, т. е. теплое помещение, то теплоизолировать поверхность не нужно. Забудьте о тонком пенофоле, тем более — о фольге! При значительных затратах на их установку они не приносят никакого эффекта. Если же внизу расположен технический этаж, сквозная проходная арка, иными словами, холодная область, то без теплоизоляции не обойтись. В такой ситуации непосредственно на бетон укладывается сертифицированный жесткий пенополистирол или пробковый агломерат толщиной не менее 50 мм, затем предварительная тонкая стяжка, далее мелкоячеистая сетка, на которой уже будет раскладываться нагревательный кабель.

Если строительной документацией предусмотрена гидроизоляция, ее следует укладывать сразу после теплоизоляции. Но в любом случае нагревательный кабель или мат не должны быть установлены сразу на тепло- или гидроизоляцию, а только через промежуточную стяжку или сетку. В таком случае уровень пола поднимется, уменьшив общую высоту потолка санузла. Будьте к этому готовы, если хотите установить теплый пол, имея внизу холодное пространство!

Далее рассчитывается свободная площадь, на которую необходимо уложить теплый пол. И здесь все просто! Из общей площади всего санузла вычитаем площадь, занятую стационарным оборудованием и отступаем немного от стен. Обогревать поверхность, на которой вы никогда не будете стоять, бессмысленно.

Итак, общая площадь:

Sобщ=2,6×2,0=5,20 м2

Стационарное сантехническое оборудование:

Ванна 2,0×0,9=1,80 м2

Раковина 0,6×0,4=0,24 м2

Унитаз 0,7×0,4=0,28 м2

_______________________________________________

Итого: Sоборуд=2,32 м2

Делаем отступы от стен (как правило, это 5—10см):

Sотступ=(0,2+1,7+0,2+0,2+0,3+0,8)×0,1=0,34 м2

Получаем свободную площадь:

Sсв=Sобщ­Sоборуд-Sотступ=5,2-2,32-0,34=2,54 м2

 

На основе полученного значения можно понять, какая длина кабеля или площадь мата требуется.

Вариант 1  тонкий нагревательный мат

Для рассмотренного случая, совмещенного санузла площадью 5,2 м2, подойдет мат на 2,5 м2 из готовых секций с мощностью 150 Вт/м2, например, DEVImat™ 150Т или DEVIcomfort™ 150Т. Следует учитывать, что мат укладывается в тонкий слой стяжки или плиточного клея непосредственно перед укладкой плитки. Это особенно важно, если перед этим была уложена теплоизоляция и будет заливаться стяжка. Сначала заливаем стяжку толщиной 3–5 см (такой массив не потрескается на теплоизоляторе, а мелкоячеистая сетка будет дополнительным армирующим элементом) и даем ей «встать». Как только по стяжке можно будет ходить, раскладываем мат, заливаем плиточным клеем (без воздушных пузырей) и укладываем плитку.

Вариант 2 — нагревательный кабель

Для данного варианта необходимо произвести несколько действий:

  1. Рассчитать требуемую установленную мощность по формуле Pрасч=Pуд×Sсв. В данном случае удельную мощность берем 150 Вт/м2 — рекомендованную для влажных помещений — и получаем 150×2,54=381 Вт.
  2. Выбрать марку двужильного нагревательного кабеля с мощностью Ркаб, близкой к расчётной Ррасч, в зависимости от возможной толщины стяжки:

Стяжка

Нагревательный кабель

Марка

Длина секции

Мощность Ркаб (напр. 230 В)

Сопротивление (-5…+10)%

Шаг укладки расчётный

2,5…5 см

DEVIflex™ 18T

22 м

395 Вт

134,2 Ом

11,5 см

  1. Вычислить шаг укладки нагревательного кабеля «змейкой» по формуле Δс-с(см)=100×Sсв(м2)/ Lкаб(м), например, 100×2,54/22=11,5 см.

 

Система теплого пола управляется с помощью терморегулятора. Линейка DEVI предлагает устройства с разной степенью функциональности:

 

— встраиваемый в монтажную коробку DEVIreg™ 530

 

— встраиваемый в монтажную коробку, с таймером DEVIregTouch

 

— встраиваемый в монтажную коробку, с Wi-Fi DEVIregSmart

 

Устанавливать терморегулятор следует на внешней стороне стены ванной комнаты, например, рядом с выключателем света. На специальной странице в Инструкции по установке изделия необходимо нарисовать схему укладки кабеля или мата. В зоне теплого пола, напротив терморегулятора, нужно выбрать место для установки окончания гофротрубки с заглушкой для монтажа датчика температуры. Это точка контроля температуры пола, место расположения которой должно быть строго симметрично относительно соседних линий нагревательного кабеля, не ближе 0,3 м от края зоны обогрева и, желательно, не дальше 2 м от терморегулятора.

 

Расход трубы теплого пола на 1 м2 таблица и параметры расчета

Автор Монтажник На чтение 10 мин Просмотров 24.8к. Обновлено

Теплые полы с водяным подогревом устраивают для отопления помещений во многих индивидуальных домах, для их монтажа используют трубопровод из различных материалов, который помещают под стяжку или укладывают открытым методом. Перед проведением работ составляют план и делают расчет необходимых материалов, при этом одним из важных показателей является расход трубы теплого пола на 1 м2 таблица значений которого может оказаться полезной специалистам или заказчикам.

Если отсутствует предварительный план с инженерными расчетами, перед прокладкой теплых полов приходится решать множество задач, связанных с методами монтажа и определением вида, геометрических размеров и количеством материала трубопровода. Пользователь может сам рассчитать трубу для теплого пола на предварительном этапе, определив важные параметры путем несложных подсчетов или воспользовавшись онлайн-калькуляторами из интернета.

Рис. 1 Варианты покрытий водонагреваемых полов частных домов

Преимущества теплых полов перед радиаторным отоплением

Главные виды теплообменников для обогревания индивидуальных домов —  радиаторные батареи и водяной теплый пол, последние имеют следующие преимущества:

  • Энергоэффективность водонагревного пола значительно превышает батарейное отопление, то есть для обогрева помещений потребуется меньше тепловой энергии и соответственно расхода финансовых средств на топливо.
  • Благодаря тому, что трубопровод с тепловым носителем располагается под всей площадью напольного покрытия комнаты, он дает намного более равномерный обогрев помещений, чем точечно расположенные радиаторы около стен.
  • Спрятанный в полу трубопровод не нарушает эстетичный вид комнат в отличии от радиаторов, расположенных около стен. К тому же обогреваемый пол удобнее батарей, которые часто мешают эстетичной и практичной расстановке мебели и предметов интерьера в помещении.
  • Половой обогрев не отнимает полезную площадь в комнатах в отличие от радиаторных теплообменников.
  • Довольно часто в индивидуальных домах кладут на пол плитку, которая обладает высоким коэффициентом теплопроводности и воспринимается всегда холодной. Ее подогрев через пол повышает комфортность пользования помещением, препятствует образованию по углам и в швах плесени или грибка.
  • Комнату с нагреваемым полом без радиаторов намного проще убирать, из-за отсутствия грязи в местах выхода труб помещение чище с гигиенической точки зрения.
  • Из-за большой массы и объема стяжки, плит перекрытия, в которых помещен нагревательный трубопровод, теплый пол обладает значительно большей тепловой инерционностью в отличие от радиаторных теплообменников. Поэтому при аварийных отключениях электроэнергии и прекращении работы нагревательного котла, тепло в доме при половом обогреве будет удерживаться значительно дольше, чем с батареями.

Рис. 2 Укладка водонагреваемых полов на пенополистирольные подложки

Какие технические параметры определяют при укладке трубопровода

Перед укладкой напольного контура обычно проводят тепловой расчет, который учитывает оптимальную температуру в помещении, потери тепла в зависимости от материала стен (теплопроводности), температурные параметры теплового носителя в системе. Полученные данные помогают рассчитать количество труб для теплого пола, то есть определить их оптимальную длину и диаметр. Перед монтажом полового отопления специалисту и (или) домовладельцу следует определиться с рядом перечисленных ниже факторов.

Выбор материала трубопровода

Для укладки теплых полов оптимально подходит несколько видов металлических и полимерных труб, главные требования к материалам: коррозионная стойкость, хорошая теплопроводность, низкий коэффициент температурного расширения и длительный эксплуатационный срок. При выборе материала трубопровода на теплый пол рассматривают следующие разновидности:

Медь. Трубы из отожженной меди обладают наивысшей степенью теплопроводности и высокой коррозионной устойчивостью, их основным недостатком является высокая стоимость. Также медные трубы сложны в монтаже, при их прокладке для сгибания нужен трубогиб, соединение обычно производят при помощи газовой сварки.

Еще одним недостатком меди может служить форма выпуска — стандартной длины бухты в 50 м не всегда достаточно для устройства контура отопления без стыковых соединений под стяжкой.

Нержавейка. Гофрированный трубопровод из нержавейки обладает приемлемой стоимостью при высокой теплопроводности, неплохой коррозионной стойкостью и относительной простотой в укладке. Его основной недостаток — высокое гидравлическое сопротивление водному потоку, связанное с ребристой поверхностью внутренних стенок, а также не всегда приемлемое качество металла в дешевом товаре, приводящее со временем к коррозии стенок и протечкам.

Рис. 3 Трубопроводы из меди и нержавейки

Сшитый полиэтилен РЕХ. Трубы из сшитого полиэтилена (ПЭ) являются основными конкурентами металлических, они имеют более низкую стоимость и наивысшую степень коррозионной стойкости из-за химической нейтральности полимеров.

Основные недостатки трубопровода из сшитого полиэтилена — высокий коэффициент теплового расширения, кислородопроницаемость и низкая теплопроводность ликвидируется одним выстрелом. После дополнения РЕХ-трубы оболочкой из алюминия (металлопластик) резко падает степень линейного расширения материала от тепла и кислородная проницаемость, улучшается теплопередача трубопроводной линии.

РЕХ-трубы без алюминиевой оболочки просты в укладывании, для их подсоединения к распределительным коллекторным гребенкам можно использовать компрессионные евро-фитинги, которые легко фиксируются разводным ключом без применения специнструмента (паяльников, пресс-клещей).

Сшитые полиэтиленовые РЕХ-трубы реализуют в бухтах длиной до 200 м, так что их метража всегда будет достаточно для устройства контуров отопления любой протяженности.

Термостойкий полиэтилен PERT. Термомодифицированный материал по физическим свойствам пластичности и гибкости напоминает обычный полиэтилен, имеет недостатки, присущие сшитому аналогу РЕХ. Более высокими характеристиками обладает улучшенные PERT-трубы с внутренней алюминиевой оболочкой. Трубопровод из термостойкого ПЭ также монтируют на компрессионные муфты (с алюминиевым слоем на пресс-муфты), его длина в бухтах доходит до 200 м.

Рис. 4 ПЭ-трубы – металлопластик и PERT

Температура пола в помещениях

Поверхность водонагревного пола не должна быть слишком холодной, при низкой температуре сложно получить достаточный обогрев помещения, а находиться и перемещаться по такому покрытию станет некомфортно. Противоположная ситуация приведет к перегреву комнат и также к неудобствам при пользовании полом. Общепринятым считается следующие температурные показатели напольного покрытия:

  • для жилых помещений 29 — 32 °С;
  • для ванных комнат, санитарных узлов и бассейнов 32 – 35 °С;
  • для мастерских или рабочих кабинетов с активной физической деятельностью 26 — 28 °С;
  • в коридорах, нежилых помещениях, лестничных площадках, тренажерных залах 18 — 22 °С.

Температура теплоносителя

Температурные характеристики теплоносителя также оказывают существенное влияние на расчет трубы для теплого пола, то есть чем она выше, тем меньшая длина трубопровода понадобится для обогревания помещений.

В отличие от радиаторных батарей, на полы подается теплоноситель в значительно меньшем температурном диапазоне от 40 до 55 °С. Установлено, что оптимальной температурной разницей между подачей и обраткой считается показатель в 10 °С — именно его придерживаются при настройке и регулировке отопительной системы.

Рис. 5 Схемы обогревания индивидуального дома

Диаметр трубопровода

Для укладки теплых полов в основном используют полимерные трубопроводы наружными диаметрами 16 или 20 мм с различной толщиной стенки.

При реализации первого варианта трубопровод легче укладывать, для перекрытия контура понадобится слой стяжки толщиной меньше на 4 мм. Основным недостатком 16 мм линии по сравнению с 20 мм является ее более высокое гидравлическое сопротивление, что приводит к снижению КПД системы. Поэтому рекомендуется укладывать 16 мм трубопровод на объектах небольшой площади, а 20 мм изделия использовать в просторных помещениях с контурами отопления большой длины.

Максимальная длина контуров отопления

Чем больше длина трубопровода и меньше его диаметр, тем более сильное гидравлическое сопротивления испытывает проходящей по контуру теплоноситель и соответственно требуется большая мощность циркуляционного насоса для его проталкивания.

Промышленность выпускает в основном циркулярные электронасосы со стандартизированными параметрами мощности, рассчитанные на определенные нагрузки, то есть если гидравлическое сопротивление в линии станет слишком большим, насос не сможет протолкнуть рабочую среду для ее нормального прохождения по контуру.

Исходя из практических результатов, установлена максимальная длина трубопроводов подогреваемых полов: для 16 мм изделий она не должна превышать 100 м, для 20 мм — 120 м.

Чтобы избежать возможных перегрузок, для работы системы в нормальном режиме обычно не

укладывают 16 мм трубопровод длиной более 80 м, а 20 мм — свыше 100 м.

Рис. 6 Схемы укладки

Тип укладки

Существует две основные формы укладки половых контуров — зигзаг (змейка) и улитка (спираль). Если присмотреться к первому варианту, то очевиден его основной недостаток — разная температура теплоносителя в начальной и более удаленной от распределительной гребенки точки. К тому же при укладке змейкой трубу придется изгибать на 180 градусов, что бывает неприемлемо при использовании жестких материалов (потребует применения трубогиба), а также приведет к повышению гидравлических потерь.

При раскладке улиткой получают абсолютно равномерный прогрев пола, связанный с тем, что ветви подачи и обратки проходит рядом и их суммарная температура всегда равна. То есть в начальной точке контура при наиболее горячей подаче рядом с ней располагается трубопровод с самой холодной обраткой, и такая ситуация наблюдается по всей площади помещения. Еще одно весомое преимущество улитки — ее намного проще укладывать пол, чем зигзаг.

Исходя их вышеперечисленных особенностей, схему укладки зигзагом используют в узких помещениях малой площади и при коротком контуре отопления, а улиткой прокладывают трубопровод в основных помещениях большей площади.

Следует отметить, что недостаток укладки обычным зигзагом устранен в схеме с двойной змейкой, где обратка проходит рядом с трубопроводом подачи.

Рис. 7 Зависимость теплового потока от шага укладки, температуры теплоносителя и диаметра труб

Расстояние между трубами теплого пола (шаг укладки)

Общепринятым шагом укладки считается диапазон от 100 до 300 мм включительно, а стандартным размером его изменений является длина 50 мм. Такие расстояния определены экспериментальным путем, то есть при более близком расположении труб разница температур подачи и обратки будет слишком мала и эффективность работы отопительной системы упадет. При большем удалении сложно получить необходимую для достижения комфортного температурного режима теплоотдачу, а сама поверхность пола станет нагреваться неравномерно с ощутимыми полосками тепла. Шаг укладки влияет на расчет длины трубы для теплого пола, понятно, чем он меньше, тем длиннее трубопровод необходим для монтажа.

Также при укладке учитывают более низкие температуры стяжки около стен и оконных проемов, выходящих на улицу. Поэтому многие специалисты в районе краевых зон (1 метр от наружных стен) рекомендуют уменьшать шаг укладки на 50 мм от основного расстояния для обеспечения равномерности обогрева полового покрытия.

Также для снижения тепловых потерь трубопровод рекомендуется укладывать на расстоянии не менее 150 мм от стен, выходящих на улицу.

Общепринятым считается шар укладки в больших жилых помещениях 200 мм, малых комнатах типа небольших кухонь, ванных и санитарных узлов — 150 мм.

Рис. 8 Теплопередача полов, залитых цементно–песчаной стяжкой, под разными покрытиями

Статья по теме:

Подключение теплого пола к системе отопления – варианты, схемы, узлы системы. Если читаете про расход трубы теплого пола на 1 м2 таблица, то, возможно, будет также интересно узнать про варианты подключения труб теплого пола к системе отопления, то можете почитать об это м в отдельной статье на нашем сайте.

Расход трубы теплого пола на 1 м

2 таблица

Перед тем, как рассчитать длину трубы для теплого пола, определяют следующие показатели:

  • общую площадь помещений в квадратных метрах под обогрев;
  • и сколько метров трубы надо на 1 квадратный метр теплого пола.

Затем умножают найденную длину трубы на 1 м2 на общий квадратаж и получают искомый результат.

Определить, сколько трубы пойдет на квадратный метр теплого пола, можно без всяких формул, призвав на помощь логику. К примеру, если трубопровод укладывается с шагом 200 мм, то на участке площадью 1 м2 можно уложить 5 отрезков длиной 1 м, то есть получим искомый результат 5 м.

По аналогии на 1 м2 площади при шаге 300 мм уйдет 3 отрезка по 1 м и дополнительно 1/3 длины, то есть 3,3 м.

Если при подсчетах мы учитывали, к примеру, поперечные участки, то не следует забывать и о продольных, то есть к полученным значениям в конце придется прибавить общую длину двух стен комнат или сразу отобразить это в таблице, увеличив подсчитанный ручным методом показатель.

Рис. 9 Таблица расхода трубы на 1 м2 водонагревного пола

Чтобы определить общую длину трубопровода водяного теплого пола, сначала рассчитывают его расход на 1 квадратный метр, а затем умножают полученный результат на общую площадь помещения. Обычно длина трубопровода для обогреваемых полов не должна превышать 100 м, если это происходит, укладывают два и более контуров отопления.

Расчёт тёплого электрического пола

Вы решили улучшить обогрев своего жилья или вовсе отказаться от отопления с помощью батарей? Сейчас для этих целей принято использовать различные виды полов с подогревом. Если водяной вариант вам по какой-то причине (а их может быть много) не подошёл — с такой задачей справится система электрического обогрева. Расчёт тёплого пола с таким действующим элементом, как и его устройство, имеет свои особенности. И чтобы все работы прошли гладко, необходимо в них хорошо разобраться. Начнём с устройства.

Элементы конструкции

Система электрического тёплого пола состоит из нескольких взаимосвязанных частей. К ним относятся:

  • терморегулятор;
  • термодатчик;
  • силовой кабель;
  • нагревающий элемент.

Функционирует это таким образом: к терморегулятору, который ставится в стену через силовые (монтажные) провода подключаются остальные составляющие. Нагревающий элемент и термодатчик монтируются в пол. Первый из них греет, а второй — контролирует температуру.

Чаще всего на практике применяются три вида нагревающих элементов:

  • сетчатый мат;
  • инфракрасная плёнка;
  • нагревательный кабель.

Плёнка и мат менее требовательны к монтажу. Они могут укладываться под слой плиточного клея даже при его толщине в несколько миллиметров. Поэтому идеально подходят для установки под кафель. А инфракрасную плёночную систему вообще можно ставить непосредственно под паркет или ламинат.

С кабельным вариантом дела обстоят немного сложнее. Во-первых, такое устройство необходимо заливать стяжкой, во-вторых — нужно рассчитывать шаг витка во время укладки. К тому же сам кабель делится на несколько разновидностей.

Разновидности кабеля

Для вашего пола может быть использован одножильный кабельный нагревающий элемент или его двужильный аналог. Одножильный — самый простой, дешёвый и неудобный в применении. Один из его главных недостатков — сложность в расчёте и установке. Она возникает из-за необходимости сводить оба конца кабеля в одно место. То есть укладывать его надо таким образом, чтобы финишировать возле места подключения к терморегулятору.

Не менее существенный минус — интенсивное электромагнитное поле по всей протяжённости провода. Оно считается вредным для здоровья человека. По этой причине системы с одножильным элементом использовать в жилых помещениях не рекомендуют.

Двужильный стоит немного дороже, но и трудностей с ним меньше. Расположение проводов для подачи и возврата тока в одном кабеле решает обе озвученные проблемы. При его монтаже достаточно учесть геометрию помещения, а индукционное поле гасится движением тока в разных направлениях.

Теперь можно приступать непосредственно к подготовке вычислений.

Особенности расчёта

Основными параметрами, влияющими на результат, являются площадь и тип постройки, для которой будет выполняться подсчёт, а также режим использования системы. Каждый из них по-своему будет отражаться на необходимой мощности обогрева.

Площадь

Для расчёта электрического пола принимается во внимание только свободное пространство комнаты. Под мебелью и крупными бытовыми приборами укладывать его нельзя по нескольким причинам:

  • недостаточная вентиляция и как следствие, возможный перегрев системы;
  • негативное влияние постоянного тепла на сами установленные объекты.

Поэтому площадь, на которой вы планируете расположить подобные предметы, нужно будет вычесть из общего количества квадратных метров помещения.

Тип помещения и режим обогрева

Каждая часть здания имеет свои показатели по теплопотерям. Соответственно мощность обогрева для их компенсации тоже будет отличаться. Существенные коррективы внесёт и режим, в котором планируется использовать систему — основное отопление или дополнительное. На этом этапе лучше проявить максимум внимания, чтобы учесть все тонкости и не прогадать с выбором.

Выбирать придётся из усреднённых показателей мощности. Если тёплый пол будет основным отоплением — они должны быть в пределах 150–180 Вт/м2. Использовать его в качестве основного источника тепла можно, только если «чистая» площадь для укладки составит не менее 70% от общей. Если он будет только помощником — достаточно 110–140 Вт/м2. Такие же данные существуют и для разных типов помещения при комфортном режиме:

  • комната, кухня — 120 Вт/м2;
  • ванная — 140 Вт/м2;
  • остеклённая лоджия или тёплый балкон — до 180 Вт/м2.

Однако, если ваша квартира расположена на первом этаже, или по каким-нибудь другим причинам под ней оказалось неотапливаемое помещение — все показатели нужно увеличить на 15–20%.

Отдельно стоит отметить, что эти цифры относятся к хорошо утеплённым постройкам. При слишком больших теплопотерях стоит задуматься об эффективности установки такого отопления. Даже если эти показатели находятся в пределах нормы, желательно дополнительно утеплить плиту под полом. Таким образом получиться направить действие системы на повышение температуры воздуха в помещении, а не бетона в перекрытии.

Формулы расчёта

Переходим к главному вопросу — как рассчитать тёплый пол с электрическим нагревающим элементом. А вот здесь всё очень просто. Чтобы определить мощность вашей системы достаточно мощность одного м2 умножить на площадь, которую она будет занимать.

Длина кабеля обычно уже отмеряна в комплекте под заданные параметры мощности и площади покрытия. Рекомендованное расстояние между витками кабеля — от 5 до 20 см. Если хотите точнее — воспользуйтесь следующей формулой: h=S*100/L. Как вы, наверное, догадались h — это ширина шага, S — площадь, а L — общая длина кабеля.

Чтобы ещё больше облегчить себе процесс выполнения расчёта, можете использовать специальный калькулятор для электрического тёплого пола. Просто заполните все необходимые поля, и программа сама произведёт нужные вычисления и выдаст вам итоговый результат.

Калькулятор расчёта тёплого электрического пола

Каким бы способом вы ни воспользовались, помните, что лучше потратить больше времени на этапе проектирования и расчёта, чем потом тратить время и деньги для исправления допущенных ошибок. А наградой за это вам будет уют и благоприятная погода в доме.

Оцените статью:

(3 голоса, среднее: 1 из 5)

Поделитесь с друзьями!

Мощность теплого пола на 1 м2: порядок расчета

При устройстве системы полового обогрева любого вида важным пунктом становится мощность теплого пола на 1 м2. Изначально это влияет на выбор материала, площадь покрытия и тип нагревательного элемента.

В конечном итоге, эффективность отопления скажется на семейном бюджете в виде ежемесячных плат за электроэнергию. Рассмотрим специфику расчета эффективности отопления полом в зависимости от индивидуальных особенностей.

Необходимые данные

Для начала рассчитайте площадь дома

Для расчета требуемой эффективности элементов необходимо определиться с некоторыми факторами, имеющими непосредственное влияние на этот показатель:

  • отапливаемая площадь;
  • качество теплоизоляции стен и перекрытий;
  • теплопроводность финишного покрытия пола.

Кроме этих данных, важно понимать, в качестве какого элемента будут использоваться полы: основного или дополнительного?

Для беспроблемной работы и гарантированного долгого срока службы отопления она должна работать в режиме, не превышающим 80% от максимальной мощности.

Расчет мощности теплого пола во много зависит от правильности заданной полезной площади.

В качестве основного отопления укладка электрических полов может использоваться только при условии, что покрытие составляет не менее 70% от общей площади помещения.

Для определения эффективности отопления используем формулу P = S*k, где:

P – мощность элемента обогрева;

S – полезная площадь;

k – удельная мощность.

Удельные мощности электрического теплого пола для помещений различного типа:

Тип помещения Удельная мощность системы теплого пола на 1 м2 (Вт/м2)
1 Жилые комнаты, кухня (1 этаж) 140-150
2 Жилые комнаты, кухня (2 этаж и выше) 110-120
3 Застекленные и утепленные балконы и лоджии 140-180
4 Санузлы (1 этаж) 120-150
5 Санузлы (2 этаж и выше) 110-130
6 Основное отопление не менее 180
7 Дополнительное создание комфортных условий 110-120

Расход электроэнергии при этом весьма приблизительный. Многое зависит от уровня теплоизоляции в целом: уровень теряемого тепла через окна, стены, перекрытия.

Расчет необходимой мощности комфортных полов для санузла общей площадью 10 м2 на втором этаже в качестве основной системы отопления:

Полезная площадь составит: 10/100*70= 7 м2. Удельная сила для санузлов второго этажа 130 Вт/м2, но при этом использование полов как основного элемента системы отопления предполагает мощность не менее 180 Вт/м2.

Принимаем большее значение. Получаем: Р=7*180=1260 Вт (1,26 кВт) – общая теплоотдача пола в санузле.

Не всегда планировка комнаты может позволить использовать половую систему в качестве основного источника отопления. Между нагревательным элементом и мебелью должно быть расстояние не менее 10 см.

В небольших комнатах с широкой мебелью (диван, кровать) использовать систему теплого пола в качестве основной не целесообразно.

Расчет потребления электроэнергии

При проектировании системы обогрева, как правило, составляется чертеж расположения её элементов. Исходя из данных плана, легко высчитать площадь теплого пола. Если чертеж не сохранился, то приблизительно принимаем площадь отапливаемых полов 70% от общей площади.

Условно время работы теплых полов берут из расчета 6 ч в день

Для жилого помещения первого этажа площадью 20 м2, обогревать в качестве основного источника необходимо 14 м2.

Удельная мощность теплого пола для данного типа помещения составляет 150 Вт/м2. Соответственно потребление электроэнергии на систему напольного обогрева составит: 150*14=2100 Вт.

Условно в день полы включены в течение 6 часов, тогда ежемесячная норма составит 6*2,1*30=378 кВт/час. Умножьте полученное число на стоимость 1 кВт в регионе и получите стоимость затрат на электроэнергию в данной комнате.

При условии включения в систему отопления терморегулятора и установки работы в экономичный режим расход на электроэнергию, затрачиваемую полами, можно сократить на 40%.

Мощность системы водяного теплого пола вычислить сложнее, в данных расчетах лучше довериться онлайн – калькулятору или проконсультироваться со специалистом. О том, как рассчитать мощность для пленочных полов, смотрите в этом видео:

Типы нагревательных элементов

Существует несколько видов электрического теплого пола, мощность которых напрямую зависит от типа нагревательного элемента. Электрополы работают на:

Нагревающий элемент Мощность (Вт/м2) Тип финишного покрытия
Инфракрасная пленка 150 — 400 Любое
Электрокабель 120 — 150 Керамическая плитка, керамогранит
Термомат 120 — 200 Керамическая плитка

Данные приняты среднестатистические, у конкретного бренда показатели могут незначительно отличаться. Таким образом, видно, что устройство любой системы обогрева в помещение любого типа возможно всеми вариантами электрических теплых полов.

Сокращаем затраты

Благодаря применению терморегулятора вы сможете сэкономить до 40 % электроэнергии

Удобство и комфорт, создаваемые отапливаемыми полами, омрачает только один фактор – счет за электроэнергию. Как, не лишая себя удобств, снизить расходы на электроэнергию? Несколько советов по умному потреблению:

  1. Обязательно смонтируйте терморегулятор. Расположить его лучше на максимальном удалении от основной отопительной системы. Регуляторы позволяют сэкономить до 40% электроэнергии за счет необходимого включения.
  2. Максимально снизьте потерю тепла. При необходимости проведите работы по теплоизоляции стен. Согласно опытных статистических исследований, улучшение теплоизоляции снижает расходы на электроэнергию почти в 2 раза.
  3. Установите многотарифную систему оплаты электроэнергии. При этом отопление полами в ночное время обойдется в зависимости от региона в 1,5 – 2 раза дешевле.
  4. Начните экономить ещё на этапе монтажа. Не заводите элементы отопления в места расположения мебели, делайте необходимые отступы от стен и приборов отопления.
  5. И простая математика: понизив температуру всего на 10С, потребление электроэнергии сокращается на 5%.

Подойдите к вопросу укладки теплых полов ответственно. Заранее просчитайте необходимую мощность приборов. Эти данные помогут правильно подобрать элементы нагрева и пользоваться системой без значительного ущерба для семейного бюджета.

Как рассчитать «Обогреваемую площадь»

Традиционные электрические маты и кабели излучающего теплого пола, подобные тем, которые производятся компаниями
SunTouch, Nuheat и Schluter-Systems, относятся к системам сопротивления системам обогрева . Это означает, что проволока каждого размера нагревательных элементов проектируется индивидуально, чтобы гарантировать, что она излучает оптимальное количество тепла, а укорочение элемента или сращивание большего количества материала, чтобы сделать его длиннее, приведет к неправильному нагреву элемента и потенциально может снизить срок службы системы.Это делает особенно важным убедиться, что вы заказываете мат (и) или кабель (и), которые лучше всего подходят для вашей местности. Но не волнуйтесь, мы здесь, чтобы помочь!

Лучший способ определить, какого размера коврик или кабель вам нужен, — это создать чертеж комнаты с размерами, включая размеры от стены до стены, размеры встроенных приспособлений, таких как туалетные столики и кухонные островки, а также расположение любых вентиляционных отверстий. или стоки. Для ванных комнат также укажите расстояние от стены за унитазом до фланца или основания унитаза.Ниже приведен пример полного чертежа.

Отсюда процесс определения того, какой коврик или кабель вам нужен, зависит от устанавливаемого продукта.


Коврики SunTouch

  • Начните с расчета площади в квадратных футах открытой (ых) площади (а) (всего, что не закрыто встроенными приборами или не закрыто вентиляционными отверстиями или стоками). Это даст вам то, что обычно называют «плиточной областью» комнаты.

ПРИМЕЧАНИЕ : Коврики SunTouch безопасны (внесены в список UL) для установки в душевых, но рекомендуется использовать отдельный коврик

.

мат или кабель в душевой кабине, поэтому при обогреве ванной комнаты рассчитывайте основную площадь и душ отдельно.

  • Коврики можно устанавливать рядом с туалетами, ваннами, шкафами и душевыми, но они должны находиться на расстоянии 2–4 дюймов от стен. Чтобы убедиться, что у вас будет подходящая граница, умножьте общую площадь плитки на 0,9, чтобы вычислить общую отапливаемую площадь.
    • Для ванных комнат вычтите из облицованной плиткой области участок вокруг фланца унитаза, достаточно большой, чтобы нагревательные элементы находились на расстоянии 6 дюймов от воскового кольца (обычно 2–4 кв. Фута).
  • Наконец, выберите мат (или маты), закрывающий квадратный метр, ближайший к отапливаемой зоне.Помните, что вы можете подключить до трех матов к одному термостату, если общая сила тока меньше 15.

Кабель WarmWire

  • Начните с расчета площади в квадратных футах открытой (ых) площади (а) (всего, что не закрыто встроенными приборами или не закрыто вентиляционными отверстиями или стоками). Это даст вам то, что обычно называют «плиточной областью» комнаты.

ПРИМЕЧАНИЕ : кабели WarmWire безопасны (внесены в список UL) для установки в душевых, но рекомендуется использовать отдельный коврик или кабель в душе, поэтому при обогреве ванной комнаты рассчитывайте основную площадь и душ отдельно.

  • Хотя кабели можно прокладывать рядом с туалетами, ваннами, шкафами и душевыми, они должны находиться на расстоянии 2–4 дюймов от стен. Чтобы убедиться, что у вас будет подходящая граница, умножьте общую площадь плитки на 0,9, чтобы вычислить общую отапливаемую площадь.
    • Для ванных комнат вычтите из облицованной плиткой области участок вокруг фланца унитаза, достаточно большой, чтобы нагревательные элементы находились на расстоянии 6 дюймов от воскового кольца (обычно 2–4 кв. Фута).
  • Наконец, выберите кабель (или кабели), который покрывает квадратный метр, ближайший к вашей обогреваемой области.Помните, что вы можете подключить до трех кабелей к одному термостату, если общая сила тока меньше 15.

Стандартные коврики Nuheat

  • Обратите внимание на размеры открытых пространств в комнате (все, что не закрыто встроенными приборами или не закрыто вентиляционными отверстиями или стоками). Это то, что обычно называют «выложенной плиткой зоной» комнаты. Выберите мат или набор ковриков из раздела Nuheat Standard Mat, который лучше всего подходит для облицованной плиткой области, не приближаясь к фланцу унитаза более чем на 6 дюймов и на расстоянии 2 дюймов от стен с плинтусами.

ПРИМЕЧАНИЕ : Коврики Nuheat нельзя разрезать или придавать им форму, поэтому, если нет коврика, подходящего для этой области, выберите размер на следующий меньший.


Кабель Nuheat

  • Начните с расчета площади в квадратных футах открытой (ых) площади (а) (всего, что не закрыто встроенными приборами или не закрыто вентиляционными отверстиями или стоками). Это даст вам то, что обычно называют «плиточной областью» комнаты.

ПРИМЕЧАНИЕ : Кабели Nuheat безопасны (внесены в список UL) для установки в душевых, но рекомендуется использовать отдельный коврик или кабель в душе, поэтому при обогреве ванной комнаты рассчитывайте основную площадь и душ отдельно.

  • Хотя кабели можно прокладывать рядом с туалетами, ваннами, шкафами и душевыми, они должны находиться на расстоянии 2–4 дюймов от стен. Чтобы убедиться, что у вас будет подходящая граница, умножьте общую площадь плитки на 0,9, чтобы вычислить общую отапливаемую площадь.
    • Для ванных комнат вычтите из облицованной плиткой области участок вокруг фланца унитаза, достаточно большой, чтобы нагревательные элементы находились на расстоянии 6 дюймов от воскового кольца (обычно 2–4 кв. Фута).
  • Наконец, выберите кабель (или кабели), который покрывает квадратный метр, ближайший к вашей обогреваемой области.Помните, что вы можете подключить до трех кабелей к одному термостату, если общая сила тока меньше 15.

DITRA-HEAT

  • Начните с расчета общей площади помещения в квадратных футах, в том числе под встроенными приборами, такими как шкафы, кухонные островки и туалетные столики. Хотя вы не будете нагревать всю эту область, вам нужно будет покрыть ее мембраной DITRA-HEAT, поэтому держите этот номер под рукой.
  • Затем рассчитайте площадь в квадратных футах открытой (ых) площади (ей) (всего, что не закрыто встроенными приборами или не закрыто вентиляционными отверстиями или стоками).Это даст вам то, что обычно называют «плиточной областью» комнаты.

ПРИМЕЧАНИЕ : Кабели DITRA-HEAT безопасны (внесены в список UL) для установки в душевых, но рекомендуется использовать отдельный коврик или кабель в душе, поэтому при обогреве ванной комнаты рассчитывайте основную площадь и душ отдельно.

  • Кабели можно прокладывать рядом с туалетами, ваннами, шкафами и душевыми, но они должны находиться на расстоянии 3–4 дюймов от стен. Чтобы убедиться, что у вас будет подходящая граница, умножьте общую площадь плитки на 0.9, чтобы вычислить общую отапливаемую площадь.
    • Для ванных комнат вычтите из облицованной плиткой области участок вокруг фланца унитаза, достаточно большой, чтобы нагревательные элементы находились на расстоянии 6 дюймов от воскового кольца (обычно 2–4 кв. Фута).
  • Наконец, выберите кабель (или кабели), который покрывает квадратный метр, ближайший к вашей обогреваемой области. Помните, что вы можете подключить до трех кабелей к одному термостату, если общая сила тока меньше 15.

Расчет лучистой тепловой нагрузки

Вы здесь: —
домой>
указатель обогревателя>
Индекс лучистого отопления>
настенные излучающие обогреватели>
Расчет размеров лучистого обогревателя

Лучистая тепловая нагрузка — это количество инфракрасной энергии, необходимое для нагрева
заданная площадь; выражается в кВт на квадратный метр (кВт / м2).

Расчет лучистой тепловой нагрузки

Наш онлайн-калькулятор лучистого отопления рассчитает необходимое
лучистая тепловая нагрузка для помещения с учетом его размеров и конструкции.

Чтобы вручную рассчитать лучистую тепловую нагрузку на здание, определите его площадь.
(в квадратных метрах) и умножьте на коэффициенты, указанные в таблице ниже:

Коэффициенты лучистого обогревателя Activair
Тип здания Коэффициент умножения
Малый
здание с хорошей изоляцией или подвесным потолком
0.08
Большой
помещение или территория с хорошей изоляцией, высота потолка до 3 метров
0,1
Плохо
утепленная территория с высоким потолком и бетонным полом
0,15
Неизолированный
здание, где требуется разумный уровень комфорта
0,2 ​​
Общие
отопление в большом здании или цехе
0.25
Зонный обогрев
для участка с небольшим обогревом или без него
0,45

Шаг первый

Вычислите отапливаемую площадь в квадратных метрах.

Площадь (м2) = Длина (м) x Ширина (м)

Шаг второй

Из приведенной выше таблицы выберите фактор, который наиболее точно соответствует зданию.
тип.

Тепловая нагрузка (кВт) = Площадь (м2) x коэффициент

Step Three

Выберите инфракрасные лучистые обогреватели Activair, которые подходят или немного
превышают требуемую тепловую нагрузку.

Практические соображения

Для равномерного распределения тепла лучше использовать несколько меньших
лучистые обогреватели устанавливаются на противоположных стенах, чем один большой. См. Установку
керамические инфракрасные обогреватели для более подробной информации.

Пример

Небольшой промышленный блок необходимо отапливать инфракрасными обогревателями Activair.
Блок состоит из двух частей. Мастерская, в которой установлены большие рольставни.
дверь, которую часто оставляют открытой, и офисное помещение меньшего размера (С).

Для расчета лучистой тепловой нагрузки цех имеет
был разделен на две части, отмеченные (A) и (B) на чертеже.Это сделано для того, чтобы
дополнительный обогрев погрузочной площадки для предотвращения сквозняков.

Заказчик хочет знать текущую стоимость лучистых обогревателей.
Из его счета за электроэнергию стоимость одной единицы электроэнергии составляет 0,20

.

Лучистая тепловая нагрузка для Зоны A

Площадь (A) = 5м x 5м = 25м2

Зональный обогрев выбирается из таблицы (A) с учетом дополнительного тепла
компенсировать дверной проем.

Тепловая нагрузка на площадь (A) = 25 x 0,45 = 11,25 кВт

Выбраны два настенных излучающих обогревателя HS6000 мощностью 6 кВт.

Лучистая тепловая нагрузка для Зоны (B)

Площадь (B) = 10м x 5м = 50м2

Зона (B) плохо изолирована бетонным полом, поэтому из таблицы (A) a
выбран коэффициент 0,15.

Тепловая нагрузка для Зоны (B) = 50 x 0,15 = 7,5 кВт

Для равномерного распределения тепла четыре стенки HS2000
выбраны навесные лучистые обогреватели.

Лучистая тепловая нагрузка для Зоны (C)

Площадь (C) = 5м x 5м = 25м2

Зона (C) хорошо изолирована с помощью 2.Потолок 5 м, поэтому коэффициент 0,1 составляет
выбрано.

Тепловая нагрузка для Зоны (C) = 25 x 0,1 = 2,5 кВт

Поскольку лучистые обогреватели работают лучше всего, когда они расположены напротив друг друга.
стены выбраны два настенных излучающих обогревателя HS1500.

Промышленная установка имеет общую тепловую нагрузку 21,25 кВт и может быть
обогревается с помощью 8 настенных лучистых обогревателей.

Стоимость работы в час

Чтобы рассчитать эксплуатационные расходы в час, сложите размеры лучистого обогревателя.
и умножить на стоимость одной единицы электроэнергии.

Общая мощность лучистого обогревателя = (2 x 6) + (4 x 2) + (2 x 1,5) = 23 кВт

Эксплуатационные затраты в час = 23 x 0,2 = 4,60

Фактические эксплуатационные расходы, вероятно, будут меньше. Выбрав энергию
экономия средств управления, настенные лучистые обогреватели будут включены только
при необходимости.

Лучистое отопление очень экономично

Лучистое отопление стоит недорого в установке и эксплуатации. Идеально подходит для
промышленные здания, с высокими потолками, открытыми дверями, большими тепловыми потерями и т. д.Поскольку его выход может быть направлен именно туда, где он нужен, энергия не
потраченное впустую отопление неиспользуемых площадей. Используя энергоэффективные элементы управления, которые поворачивают
лучистые обогреватели включаются только тогда, когда они необходимы.
минимум. Для получения дополнительной информации см. Лучистое отопление.
домашняя страница.

Вы здесь: —
домой>
указатель обогревателя>
Индекс лучистого отопления>
настенные излучающие обогреватели>
Расчет размеров лучистого обогревателя

Если вы нашли эту страницу полезной, найдите время
, чтобы рассказать о ней другу или коллеге.


Авторское право 2004/6, W. Tombling Ltd.

Расчет длины теплого пола калькулятором. Способы укладки трубы для теплого пола. Видео в помощь дизайнерам дома

Расчет теплоты водяного теплого пола. Онлайн-калькулятор. Программы для расчета трубы теплого пола. Расчет монтажа и отопления.
При расчете мощности теплого водяного пола к каждому дому или квартире нужно подходить индивидуально, отдельно рассматривая каждую комнату в комнате.Ведь на мощность влияет множество условий. Многое зависит от теплопотерь помещения, от комфортной для вас температуры воздуха, от температуры поверхности пола, создаваемой нагревательными элементами.

Водяной теплый пол может использоваться как основной источник отопления, так и как дополнительный источник. Но чаще всего теплый пол в собственном доме используют как основной вид отопления.

Теплый пол: Расчет мощности

Для экономичной эксплуатации теплого пола необходимо правильно рассчитать его мощность, теплопотери помещения и смонтировать теплый пол хорошо.Но чтобы рассчитать необходимую мощность для обогрева теплого водяного пола, нам нужно учитывать площадь отапливаемого помещения, из чего сделаны стены, какие окна стоят, какую температуру в помещении мы хотим иметь. . Также необходимо учитывать мощность котла, и какие трубы мы будем использовать для отопления.
Многое зависит от напольного покрытия. У таких покрытий, как керамическая плитка, теплопроводность хорошая, а у деревянных полов — низкая теплопроводность.
Если в вашем помещении много теплопотерь, то его необходимо утеплить, так как эффективность теплого пола будет невысокой.
А теперь рассмотрим, какие факторы влияют на расчет теплого водяного пола.

Расчет теплого водяного пола: Шаг укладки

Определите шаг трубы и способ ее укладки.
Есть несколько способов укладки труб. Уложите трубы спиралью или змейкой. Трубы укладываются с шагом от 15 до 30 см для равномерного утепления пола. При шаге более 30 см пол в комнате будет прогреваться неравномерно, и такой обогрев будет малоэффективным. Длина трубы в одном контуре не должна превышать 100 метров, этого расстояния должно хватить для обогрева помещения площадью до 20 квадратных метров из расчета на 1 кв.м. На площадь здания уходит около 5 метров водопроводных труб.

Расчет трубы для теплого пола

Температура в системе водяного отопления также зависит от толщины уложенной трубы. Обычно используется труба диаметром 16 мм, а при прокладке трубы диаметром 20 мм температура в системе может быть выше на 1-2 градуса.

Еще одним важным показателем при использовании нескольких контуров в жилом доме с системой водяных полов является разница в длине трубы в используемых контурах.Он не должен превышать 15 метров.

Трубы крепятся к арматурной сетке, уложенной на изоляцию с помощью хомутов или проволоки.

Особое внимание следует уделить теплоизоляции пола, так как потери тепла при плохой теплоизоляции пола составляют до 20%. Если пол делается в межэтажном помещении, то достаточно до 5 см толщины утеплителя. А если это обогрев первого этажа, то утеплитель должен быть толщиной не менее 10 см, теплоизоляционным материалом, в качестве которого можно использовать пенополистирол или минеральную вату.Концы труб — это распределительный коллектор. В коллекторе количество изгибов должно соответствовать количеству контуров теплого пола. Также коллектор должен иметь регулирующие клапаны, чтобы нагрев каждого контура можно было регулировать отдельно.

Проверка теплого водяного пола

После полной установки системы теплого водяного пола ее необходимо проверять при давлении 4-6 бар в течение дня.
Если ваша водопроводная система Нигде не протекала и трубы не деформировались, можно приступать к заливке стяжки.При заливке система теплого водяного пола остается под давлением.

Заливка стяжки для водяного пола

Залейте стяжку толщиной 10-12 см, что необходимо для набора максимальной прочности в течение месяца. Затем можно стелить напольное покрытие.

Расчет теплого водяного пола: КАЛЬКУЛЯТОР ONLINE

При расчете мощности водяного теплого пола вы можете использовать онлайн-калькулятор для расчета теплого водяного пола.

Онлайн-калькулятор поможет произвести правильные расчеты и рассчитать параметры.

С помощью этого калькулятора вы можете произвести необходимый расчет мощности водяного теплого пола. Результаты этих расчетов будут с небольшими погрешностями, но вы будете иметь общую картину предстоящих работ по устройству теплого водяного пола.

Будем рады помочь!

Если вы хотите избежать ошибок в расчете тепловой мощности вашего водяного пола и стоимости затрат на установку, лучше всего обратиться к специалистам, которые уже год занимаются внутренними инженерными сетями.Они полностью определят объем вашей работы, учтут все индивидуальные особенности вашего дома, дадут советы по выбору напольных покрытий и предложат единственно правильное решение.

Если вы живете в России, вы в первую очередь знаете, что такое холодная зима и насколько важно сохранить тепло в доме. Не менее важны деньги, которые вы платите за отопление. Популярность теплых полов в нашей стране буквально в первые годы после их появления на рынке стала огромной.И сейчас многие, увидев положительные примеры соседей, родственников и друзей, отказываются от привычных способов обогрева жилых помещений и становятся приверженцами теплых напольных покрытий.

Одна из простейших формул, которые помогут ответить на вопрос «как рассчитать теплый пол», выглядит следующим образом:

где L — необходимая длина греющего кабеля или трубы,

S — отапливаемая площадь,

Ps — требуемая удельная мощность,

Pl — удельная мощность кабеля.

Шаг (расстояние) прокладки кабеля или трубы, или шаг теплого пола можно определить по формуле:

где H — шаг укладки.

Эти формулы являются основополагающими при расчете требуемых материалов, но имеют ряд нюансов.

Как составить схему комнаты?

Чтобы нарисовать схему, по которой вы будете прокладывать водопровод в помещении, вам потребуются обязательные материалы и инструменты:

Миллиметровая бумага;

Линейка;

Карандаш;

Рулетка;

Калькулятор.

Итак, определимся с порядком действий:

  1. На плане этажа изобразите будущее положение труб пола. Учтите, что присоединенная к стояку труба сначала должна пройти возле окна, так как это основной источник холодного воздуха. По нормам трубы следует монтировать не ближе 20-25 см от стен и не ближе 35-50 см друг к другу. Здесь главный показатель — диаметр трубы.
  2. (См. Также:)

  3. Пора рассчитать длину труб, которые будут проложены в помещении.Для этого нужно измерить длину нарисованных на схеме труб и умножить ее на коэффициент, на который данные проекта переводятся в действительные числа. К полученной цифре необходимо прибавить пару метров для подводки к стояку.
  4. Не забывайте о необходимости приобретения теплоизоляционного материала, ведь он обеспечивает оптимальное распределение тепла по поверхности и предотвращает его потерю через нижние слои. Для расчета необходимого количества этого материала нужно рассчитать площадь комнаты, умножив длину на ширину.
  5. Если вы решили залить свои трубы бетонной стяжкой, то вам потребуется точное соотношение цемента и песка в смеси. По общепринятым правилам три части песка смешиваются с одной частью цемента, т.е. соотношение 1: 3. Количество воды определяется уже при перемешивании. Здесь важно учитывать, что слишком густая смесь будет плохо разравниваться, а слишком жидкая — растекаться. Желаемая толщина теплого пола определяет необходимое количество песка и цемента.
  6. (См. Также:)

TIP. Не забывайте о покупке расходных материалов: дюбелей, шурупов, крепежа для труб и маяковых профилей.

Понятие шага, высоты и длины теплого пола

Фактически расчет необходимого количества материалов и будущих размеров теплого пола теперь перестал быть чем-то фантастически сложным. Хотя сначала даже у специалистов были трудности. Например, до сих пор одной из таких сложностей является ступенька теплого пола.А все потому, что практически каждая компания, производящая элементы теплого пола, выбирает размер своего шага и мотивирует его результатами различных тестов и проверок.

Но не думайте, что от того, какой шаг вы выберете, будет зависеть конечная температура внутри помещений. Также есть регулировка и регулировка температурного режима теплого пола. Возможно, даже важнее пресловутого шага. От того, насколько прогреется пол в разных помещениях, зависит не только комфорт, но и самочувствие.

Если в доме постоянно проживают дети, то регулировке и регулировке температурного режима следует уделять пристальное внимание. К счастью, многие современные модели оснащены автоматической регулировкой, что значительно упрощает жизнь. Как вы уже понимаете, благодаря современным технологиям установка и эксплуатация теплого пола не является чем-то сложным и проблемным. В габариты теплого пола также входят высота и длина, без определения этих данных нельзя начинать монтажные работы.

Высота теплого пола складывается из высоты каждого слоя. Самыми толстыми слоями являются водопроводная система (этот слой равен диаметру уложенных труб) и бетонная стяжка (заливка). Длина теплого пола — это не длина комнаты. Это длина труб или электрического кабеля, если теплый пол использует электричество для выработки тепла.

Какая оптимальная длина теплого пола?

Длина одной петли водяного теплого пола зависит от мощности насоса.Если речь идет о пластиковых и полиэтиленовых трубах, длина петли трубы наружным диаметром 16 мм не должна превышать 100 м, диаметром 20 мм — 120 м. Также хорошо, если гидравлические потери внутреннего давления не превышают 20 кПа. Примерная площадь одной такой петли — 15 кв. М.

Какая оптимальная толщина теплого пола?

Для защиты трубопроводной системы теплого пола от механических повреждений оптимальным решением является заливка бетонной стяжки.Крайне важно правильно рассчитать толщину стяжки, так как от нее напрямую зависит высота теплого пола. Дадим несколько рекомендаций:

  1. Толщина стяжки определяется не желанием клиента, а техническими особенностями помещения. Сюда входят свойства полов и облицовочных материалов, тепловая мощность пола и т. Д.

  1. От правильной толщины бетонного слоя зависит механическая прочность и производительность всей системы отопления (теплопередача , КПД, реакция на изменение температуры).Если стяжка будет толстой, то регулировать температуру будет сложнее, так как она имеет довольно высокую теплоемкость. Другими словами, такая стяжка дольше прогревается и дольше отдает тепло в окружающую среду. К тому же толщина водяного теплого пола в этом случае будет слишком большой. А если слой бетона будет слишком тонким, он быстро перегреется и может потрескаться, а сама теплопередача будет происходить только в местах прокладки труб.
  2. Одна из задач бетонного слоя — равномерное распределение тепла по поверхности.
  3. Для жилых помещений максимальная толщина водяного теплого пола должна составлять 10 см. Для нежилых помещений большого размера (склады, автоцентры, торговые павильоны) этот уровень может быть в два раза больше. Стяжки толщиной до 30 см используются только в авиационных ангарах.
  4. Общая толщина бетонной стяжки должна полностью покрывать нагревательные элементы. Оптимальной фигурой можно назвать 6,5 см.
  5. Рекомендуемая толщина цементного слоя непосредственно над трубами варьируется от 2 см до 5 см.А если между ним и трубами проложены изоляционные слои, то цементную смесь необходимо заливать не менее 3,5 см. Отметим, что 1 м2 бетонной стяжки толщиной 5 см весит от 250 до 300 кг.

Температура и мощность водяного пола с подогревом

Водяной теплый пол выгодно отличается от более традиционных способов обогрева дома. В отличие от отопительных приборов, вызывающих движение воздуха и вызывающих конвекционные токи, водяной теплый пол нагревает весь воздух.Также он не способен нанести вред здоровью в виде ожога и сильного пересыхания кожи.

Система теплого пола, работающая за счет прокачки по трубам горячей воды, требует, чтобы температура этой воды варьировалась от 35º до 45º. Максимальная температура в этом случае составляет 50 °. Не удивляйся. Такой низкой температуры как раз достаточно для поддержания комфорта в жилом районе.

Такие системы создают тепловые потоки достаточно малой мощности. В этом случае мощность водяного теплого пола на одном квадратном метре составит от 40 до 150 Вт.Цифры хоть и не очень большие, но их достаточно для правильного функционирования всей системы и поддержания заданной температуры. Оба параметра легко регулируются как в автоматическом режиме, так и вручную.

Мощность, потребляемая теплым водяным полом на свою работу

Если в вашем доме есть газ, то можно установить теплый пол. Без центрального отопления и газа можно установить и эксплуатировать электрический теплый пол. Но поскольку электричество в настоящее время довольно дорогое, нам необходимо четко определить, какую роль теплому полу вы отводите.Вы хотите, чтобы он был основным или вспомогательным источником тепла? В любом случае назвать точную цифру, сколько потребляет теплый пол, невозможно, ведь энергопотребление теплого пола зависит от многих факторов. Это и температура окружающей среды, и уровень теплоизоляции, и тип напольного покрытия, и даже тепловая восприимчивость конкретного человека. Эти факторы влияют на количество потребляемой энергии, а потребляемая мощность теплого пола зависит от тепловых потерь помещения.

Теплый пол как дополнительный источник тепла

Для обогрева прихожей и кухни достаточно кабеля питания мощностью 120 Вт. Для ванной — 150 Вт, а для утепленного балкона — 180-210 Вт. В этом случае расход электроэнергии теплого пола будет очень скромным.

Теплый пол как основной источник тепла

В этом случае не лишним будет провести теплотехнический расчет, который однозначно определит теплопотери жилища. Мощность кабеля не должна быть меньше 180Вт.Электропотребление теплого пола будет больше. И в любом случае, независимо от того, сколько потребляет теплый пол, термостат сэкономит до 30% электроэнергии.

Выбор термостата

Термостат или термостат является неотъемлемой частью всей системы отопления. С помощью этого устройства вы можете «общаться» с теплым полом, устанавливать температуру и мощность, защищать электрический кабель пола от перегрева и многое другое.

По назначению термостаты делятся на два типа:

Простые;

Сложный.

Кстати, оснащение устройством управления ЖК-дисплеем не относит его к разряду сложных. Простые термостаты могут поддерживать только заданную температуру абсолютно в любое время суток. Тут надо подумать. Зачем топить комнату, когда все ушли на работу или уехали на выходные? Зачем поддерживать постоянную температуру в ванной, если банные процедуры закончились? А ночью кухню топить не нужно. Оказывается, благодаря простому терморегулятору теплый пол потребляет энергию и работает «вхолостую».

Здесь стоит обратить внимание на сложные терморегуляторы. Их можно запрограммировать на семейный график подогрева пола. Температура поднимется до комфортной, когда вся семья будет дома, и упадет до минимальной, когда все разойдутся по своим делам. И даже довольно высокая цена сложных терморегуляторов окупит ваши затраты буквально за полгода именно за счет четко запрограммированной работы теплого пола.

Использование материалов разрешено только при наличии проиндексированной ссылки на страницу с материалом.

Сегодня система отопления «теплый пол» никого не удивит, поэтому мы не будем вдаваться в подробности о самом сроке этой установки, а также нет смысла говорить о принципе работы этого отопительного агрегата. Есть два типа таких систем — электрическая и водяная. Второй вариант более сложный, но в то же время очень экономичный по сравнению с электрическими полями. В частном доме или квартире с индивидуальным отоплением можно без особых трудностей оборудовать систему водяного пола, при этом следует понимать, какие должны быть трубы по материалу и диаметру.От этого зависит, сколько труб должно быть на 1м 2 теплого пола.


Варианты установки отопительного агрегата

На сегодняшний день существует два метода установки блоков теплого пола — пол и бетон. Второй вариант говорит о том, что при установке и сборке элементов отопительной конструкции необходимо будет залить стяжку, в которой будет располагаться теплоноситель. Пока для первого способа характерно использование профнастила из пенополистирола или деревянной основы.При этом в процессе укладки внутренней системы отопления исключаются «мокрые операции», что приводит к сокращению общего времени монтажа всей отопительной установки.

По качеству кладки оба метода не отличаются друг от друга, одинаково хорошо справляются с поставленными задачами. Единственная разница в подходе.

Бетонное основание: особенности монтажа

На сегодняшний день данная схема подключения является наиболее распространенной. А все потому, что его обустройство не занимает много времени, а также не требует особых навыков.Трубопровод, стоимость которого во многом зависит от материала, из которого он изготовлен, а также от диаметрального размера прокладывается по определенному контуру. Схема оговаривается заранее. Кроме того, необходимо учитывать назначение утепляемого помещения (кухня, спальня, санузел, холл и т. Д.) И его конфигурацию.

Вся площадь будущего отапливаемого помещения разделена на небольшие участки, количество которых во многом зависит от размеров и геометрии помещения

Обязательно соблюдайте соотношение сторон контуров 2: 1.

Такой подход обусловлен дальнейшим расширением цементного основания при включении ТЭНа — при большом воздействии понижения / повышения температуры теплоносителя стяжка будет деформироваться, и этого следует избегать, чтобы бетон основа и декоративное покрытие не трескаются.

Перед тем, как приступить к укладке теплоносителя, необходимо на поверхность пола уложить лист теплоизоляции, что исключит потерю тепла и уход за ним в плите.

Если выбрать качественный утеплитель и правильно рассчитать количество труб для теплого водяного пола, можно добиться максимально эффективной работы всего отопительного агрегата.

В качестве теплоизолятора можно взять толстый пенопласт или специальные плиты, толщина которых зависит от назначения утепляемого помещения. Так, например, для кухни подойдет пеноблок толщиной 5-10 см, тогда как спальни лучше утеплить листом теплоизоляции, размер которого будет составлять 15 см.Это поможет исключить возможность грибковых поражений и образования плесени внутри нагревательного блока.

После укладки армированная ткань с сотовой структурой, ширина которой зависит от типа выбранного трубопровода.

Трубки крепятся к армированной сетке с помощью хомутов, после чего проводится пробная опрессовка, благодаря которой можно проверить установку на наличие дефектов и повреждений и, при необходимости, устранить неисправности. После того, как нагревательный элемент успешно прошел испытание горячей водой под давлением и температурой, которая затем будет циркулировать по системе (время обжатия составляет 24 часа), можно заливать окончательную стяжку, толщина которой варьируется от 60 до 70 мм (в зависимости от диаметрального размера охлаждающей жидкости).

Как только стяжка полностью высохнет, а это займет от одной до трех недель (все зависит от температурного режима в помещении), можно приступать к укладке декоративного покрытия, которым может быть ламинат, линолеум, паркет или плитка. Очень важно отдать предпочтение материалу, обладающему высокой теплопроводностью, иначе КПД отопительного оборудования будет крайне низким.

ВИДЕО: Расчет длины трубы для теплого пола

Как рассчитать необходимое количество труб для водяного отопления?

Перед тем, как приступить к монтажным работам по установке трубопровода, необходимо провести ряд подготовительных работ.Таким образом, важнейшим этапом подготовки проекта отопительного оборудования является расчет количества труб для устройства теплого пола.

Если в комнате в дальнейшем будет размещаться мебель или бытовая техника, то под ней запрещается прокладывать трубу для теплого пола. Соответственно, площадь источника тепла будет на порядок меньше. Также необходимо учитывать тот факт, что нагревательный элемент необходимо укладывать на расстоянии 20 см от стеновых плит.

По материалу, из которого изготовлен трубопровод. Всего четыре типа:

  • пластик,
  • металлопластик,
  • алюминий,
  • медь.

Несомненно, наиболее оптимальным вариантом будут два последних варианта, которые обладают высокими характеристиками, прочностью и отличной теплопроводностью. Но при этом термоэлемент из таких материалов обойдется вам очень дорого.

Наиболее подходящим вариантом устройства водонагревательного агрегата являются металлопластиковые трубы — они долговечны (минимальный срок эксплуатации 50 лет), имеют хорошие эксплуатационные характеристики.

При расчете длины контура теплого пола на расчет также влияет шаг петель, который может варьироваться от 10 см до 30 см. Таким образом, существуют некоторые нормативы расхода трубопровода в зависимости от шага. Для удобства мы свели эти данные в таблицу.

  • S — рабочая зона теплоносителя,
  • N — этап укладки
  • 1,1 — коэффициент запаса на изгиб.

Также при расчете необходимо прибавить количество метров от пола до установки коллектора и обратно.

Максимально допустимая длина контура

Для металлопластиковых труб Ø16 мм длина контура водяного теплого пола не должна быть более 100 м. Для одинаковой трубы Ø 20 мм — 100-120 м. Для полиэтиленовых труб Ø18 мм длина контура не должна превышать 120 м.

Вот собственно и все тонкости расчета и прокладки трубопровода установки водяного теплого пола. Мы уверены, что если вы будете следовать рекомендациям специалистов, вы сможете создать в своем доме максимально комфортный температурный режим.

ВИДЕО: Проект на расчет водяного теплого пола — материалы

На эффективность теплого пола влияет множество факторов. Без их учета, даже если он правильно собран, а при его возведении использованы самые современные материалы, отдача от него не оправдает ожиданий. По этой причине монтажным работам должен предшествовать грамотный расчет теплого пола, и только тогда можно гарантировать хороший результат.

Первоначально грамотно спланированный ход проектных и монтажных работ убережет вас от неожиданностей и неприятных проблем в будущем.

При расчете теплого пола необходимо учитывать следующие данные:

  • материал стен и особенности их конструкции;
  • размеры помещения в плане;
  • вид финишного покрытия;
  • Конструкция дверей, окон и их размещение;
  • Расположение элементов конструкции в плане.

Для реализации грамотного проектирования необходимо учитывать установленный температурный режим и возможность его регулировки.

Для приблизительного расчета предполагается, что 1 м 2 системы отопления должен компенсировать теплопотери в 1 кВт. Если контур водяного отопления используется как дополнение к основной системе, то он обязан покрывать только часть теплопотерь

  • 29⁰ — жилая площадь;
  • 33⁰ — баня, помещения с бассейном и др. С повышенным индексом влажности;
  • 35⁰ — пояса холода (у входных дверей, наружных стен и т. Д.).

Превышение этих значений влечет за собой перегрев как самой системы, так и финишного покрытия с неизбежным повреждением материала.

Сделав предварительные расчеты, можно выбрать оптимальную температуру теплоносителя по личным ощущениям, определить нагрузку на контур отопления и приобрести насосное оборудование, отлично справляющееся со стимулированием движения теплоносителя. Подбирается с запасом 20% по расходу теплоносителя.

На этапе проектирования следует решить, будет ли пол основным источником тепла или будет использоваться только в качестве дополнения к линии радиаторного отопления.Это определяет долю тепловых потерь, которую он должен компенсировать. Он может составлять от 30 до 60% с вариациями.

Много времени уходит на прогрев стяжки мощностью более 7 см. Поэтому при установке систем водоснабжения старайтесь не превышать этот предел. Наиболее подходящим покрытием для водяных полов является напольная керамика, под паркет из-за сверхнизкой теплопроводности теплые полы не укладываются в штабель

Время нагрева водяного пола зависит от толщины элементов, входящих в стяжку.Вода как охлаждающая жидкость очень эффективна, но сама система сложна в установке.

Определение параметров теплого пола

Цель расчета — получить значение тепловой нагрузки. Результат этого расчета влияет на последующие шаги. В свою очередь тепловая нагрузка влияет на среднее значение зимней температуры в конкретном регионе, ожидаемую температуру внутри помещений, коэффициент теплопередачи потолка, стен, окон и дверей.

Причина потери тепла — плохо утепленные стены, окна, двери дома. Наибольший процент тепловых потоков через систему вентиляции и крышу

Окончательный результат расчетов перед устройством теплого водяного пола будет зависеть от наличия дополнительных отопительных приборов, в том числе от тепловыделения проживающих в доме людей и домашних животных. . Обязательно учитывайте наличие инфильтрации. Одним из важных параметров является конфигурация комнат, поэтому вам понадобится поэтажный план дома и соответствующие разделы.

Методика расчета теплопотерь

Определив этот параметр, вы узнаете, сколько тепла должен отдавать пол для комфортного самочувствия людей в помещении, по мощности сможете подобрать котел, насос и пол. Другими словами: тепло, выделяемое нагревательными контурами, должно компенсировать теплопотери конструкции. Связь между этими двумя параметрами выражается формулой:

Mn = 1,2 x Q

Здесь: Mp — требуемая мощность контуров, Q — тепловые потери.

Для определения второго показателя произведите замеры и рассчитайте площадь окон, дверей, потолков, наружных стен. Поскольку пол будет обогреваться, площадь этой ограждающей конструкции не учитывается. Замеры производятся снаружи с захватом углов здания.

При расчете будут учитываться как толщина, так и коэффициент теплопроводности каждой из конструкций. Нормативные значения коэффициента теплопроводности (λ) для наиболее часто используемых материалов можно взять из таблицы:

Из таблицы можно взять значение коэффициента для расчета.Важно узнать у поставщика значение теплового сопротивления материала в случае установки окон из металлопластика

Теплопотери рассчитываются отдельно для каждого элемента здания по формуле:

Q = 1 / R x (tв — tн) х S х (1+ Σβ)

Здесь: R обозначает термическое сопротивление материала, из которого изготовлена ​​ограждающая конструкция.

Найдите его, разделив толщину конструкции на коэффициент теплопроводности материала, из которого она сделана:

R = δ / λ

Символ S обозначает площадь конструктивного элемента, tв и tн — внутренняя и внешняя температура соответственно.Второй показатель берется за наименьшее значение. β — дополнительные тепловые потери, связанные с ориентацией здания по сторонам света.

Если рассматривать вопрос на любом примере расчета водяного теплого пола, становится понятнее. Допустим, стены дома для временного проживания толщиной 20 см выполнены из газоблоков. Общая площадь ограждающих стен с вычетом оконных и дверных проемов 60м². Наружная температура — минус 25, внутренняя — плюс 20, а конструкция ориентирована на юго-восток.

Конкретный пример расчета

Учитывая, что коэффициент теплопроводности блоков λ = 0,3 Вт / (м ° хС), можно рассчитать R = 0,2 / 0,3 = 0,67 м² ° С / Вт. Также наблюдаются тепловые потери через слой штукатурки. Если его толщина 20 мм, то Ршт. = 0,02 / 0,3 = 0,07 м² ° C / Вт. Сумма этих 2 показателей даст значение потерь тепла через стены: 0,67 + 0,07 = 0,74 м² ° C / Вт.

Имея все исходные данные, подставляем их в формулу и получаем теплопотери помещения с такими стенами:

Q = 1/0.74 x (20 — (-25)) x 60 x (1 + 0,05) = 3831,08 Вт.

Таким же образом рассчитываются тепловые потери через другие ограждающие конструкции: окна, дверные проемы, кровлю.

Тепла, отдаваемого отопительными контурами, может быть недостаточно для нагрева воздуха внутри дома до желаемого значения, если их мощность недооценена. При избыточной мощности будет потеря теплоносителя

Для определения теплопотерь через потолок его тепловое сопротивление равно значению для планируемого или существующего типа утеплителя:

R = 0.18 / 0,041 = 4,39 м² ° C / Вт.

Площадь потолка идентична площади пола и составляет 70 м². Подставляя эти значения в формулу, получаем теплопотери через верхнюю ограждающую конструкцию:

Q пот. = 1 / 4,39 x (20 — (-25)) x 70 x (1 + 0,05) = 753,42 Вт.

Чтобы определить теплопотери через поверхность окон, необходимо рассчитать их площадь. Если имеется 4 окна шириной 1,5 м и высотой 1,4 м, их общая площадь будет: 4 х 1.5 х 1,4 = 8,4 м². Если производитель указывает отдельно тепловое сопротивление стеклопакета и профиля — 0,5 и 0,56 м² ° C / Вт соответственно, то Rcon = 0,5 x 90 + 0,56 x 10) / 100 = 0,56 м² ° C / Здесь 90 и 10 — проценты на элемент окна.

На основании полученных данных продолжаются дальнейшие расчеты: Qcon = 1 / 0,56 x (20 — (-25)) x 8,4 x (1 + 0,05) = 708,75 Вт.

Наружная дверь имеет площадь 0,95 x 2,04 = 1,938 м². Потом Rdv.= 0,06 / 0,14 = 0,43 м² ° C / Вт. QD. = 1 / 0,43 x (20 — (-25)) x 1,938 x (1 + 0,05) = 212,95 Вт.

Поскольку внешние двери открываются часто, через них теряется большое количество тепла. Поэтому важно обеспечить их плотное закрытие

В результате потери тепла будут: Q = 3831,08 +753,42 + 708,75 + 212,95 + 7406,25 = W. К этому результату добавляется еще 10% на инфильтрацию воздуха, тогда Q = 7406,25 + 740,6 = 8146,85 Вт. Теперь мы можем определить тепловую мощность пола Mn = 1.2 x 8146,85 = 9776,22 Вт или 9,8 кВт.

Тепло, необходимое для обогрева воздуха

Если дом оборудован системой вентиляции, то часть тепла, выделяемого источником, следует расходовать на обогрев поступающего извне воздуха. Для расчета используется следующая формула:

QB. = c x m x (tв — tн)

В нем: c = 0,28 кг⁰С и обозначает теплоемкость воздушной массы, а символ m обозначает массовый расход наружного воздуха в кг.

Последний параметр получается путем умножения общего объема воздуха, равного объему всех помещений, при условии, что воздух обновляется каждый час, на плотность, которая изменяется в зависимости от температуры.

Эта таблица является хорошим помощником при расчете количества тепла, необходимого для нагрева воздушной массы, поступающей в дом в результате принудительной вентиляции

Если здание получает 400 м 3 / ч. тогда m = 400 x 1,422 = 568,8 кг / ч. QB. = 0,28 х 568,8 х 45 = 7166,88 Вт. В этом случае необходимая тепловая мощность пола значительно увеличится.

Расчет необходимого количества труб

Для устройства пола с водяным отоплением различают разные способы укладки труб, различающиеся по форме: змейка трех видов — собственно змейка, угол, двойник и улитка.В одной смонтированной схеме можно найти комбинацию разных форм. Иногда для центральной зоны пола выбирают «улитку», а для краев — один из видов «змейки».

«Улитка» — рациональный выбор для больших помещений с простой геометрией. В помещениях очень вытянутой формы или сложных очертаний лучше использовать «змейку»

Расстояние между трубами называется ступенчатым. Выбирая этот параметр, нужно удовлетворить 2 требования: ступня стопы не должна ощущать перепад температур на отдельных участках пола, а трубы должны использоваться с максимальной эффективностью.Для пограничных участков пола рекомендуется применять шаг 100 мм. На остальных участках можно сделать выбор шага от 150 до 300 мм.

Важна теплоизоляция пола. На первом этаже его толщина должна составлять минимум 100 мм. Для этого используйте минеральную вату или экструдированный пенополистирол.

Для расчета длины трубы используется простая формула:

L = S / N x 1,1

Показывает площадь контура (S), шаг (N), запас 10% на изгибы (1,1).К окончательному значению прибавьте отрезок трубы, проложенный от коллектора до разводки теплого контура как на обратке, так и на подаче.

Ознакомьтесь с примером расчета метража для теплого пола площадью 10 м². Коллектор отрывается от пола на 6 м, а труба укладывается с шагом 0,15 м. Решение задачи простое: 10/0, 15 х 1,1 + (6 х 2) = 85,3 м. Используя металлопластиковые трубы до 100 м, обычно выбирают диаметр 16 или 20 мм. При длине трубы 120-125 м ее поперечное сечение должно составлять 20 мм².

Одноконтурная конструкция подходит только для помещений с небольшой площадью. Пол в больших помещениях делится на несколько контуров в соотношении 1: 2, а значит, длина конструкции должна превышать ширину в 2 раза.

Расчетным значением является длина трубы для пола в целом, но для полноты необходимо выделять длину одного контура. На этот параметр влияет гидравлическое сопротивление контура, определяемое диаметром выбранных труб и объемом воды, подаваемой в единицу времени.Если пренебречь этими факторами, потеря давления будет настолько велика, что ни один насос не вызовет циркуляцию охлаждающей жидкости.

Если длина трубы на участке коллекторно-напольной разводки превышает 15 м, специалисты рекомендуют добавить в таблицу значения 2 м².

Контуры одной длины — идеальный случай, но на практике встречается нечасто, потому что площади помещений разного назначения сильно различаются и приводить длину контуров к одному значению просто нецелесообразно.Профессионалы допускают разницу в длине труб от 30 до 40%.

Величина диаметра коллектора и емкости смесительного узла определяет допустимое количество подключаемых к нему шлейфов. В паспорте к смесительному узлу всегда можно найти значение тепловой нагрузки, на которую он рассчитан. Например, коэффициент производительности (Kvs) составляет 2,23 м 3 / ч. С этим коэффициентом некоторые модели насосов выдерживают нагрузку от 10 до 15 тонн Вт.

Для определения количества контуров необходимо рассчитать тепловую нагрузку каждого.Если площадь, занимаемая теплым полом, составляет 10 м², а тепловая мощность 1 м² составляет 80 Вт, то 10 × 80 = 800 Вт. Отсюда смесительный узел сможет обеспечить 15 000/800 = 18,8 комнат или контуров. площадью 10 м².

Эти показатели максимальные, и их можно применить только теоретически, но реально цифру нужно уменьшить минимум на 2, затем 18 — 2 = 16 контуров. Стоит посмотреть подборку коллекционера, есть ли у него такое количество выводов.

Проверка правильности диаметра труб

Для проверки правильности выбора сечения труб можно воспользоваться формулой:

υ = 4 х Q х 10ᶾ / n х d²

Когда скорость соответствует найденному значению, сечение трубы выбрано правильно. Нормативные документы допускают максимальную скорость 3 м / сек. диаметром до 0,25 м, но оптимальное значение — 0,8 м / сек. т.к. с увеличением его величины шумовое воздействие в трубопроводе возрастает.

Считаем рециркуляционный насос

Чтобы система была экономичной, необходимо подобрать насос, обеспечивающий необходимый напор и оптимальный поток воды в контурах. В паспортах помпы обычно указывается напор по контуру наибольшей длины и суммарный расход теплоносителя во всех контурах. На напор влияют гидравлические потери:

Δ h = L x Q² / k 1

В этой формуле:

  1. L — длина контура.
  2. Q — расход воды в л в секунду.
  3. k1 — коэффициент, характеризующий потери в системе. По справочным таблицам можно взять справочник по гидравлике или из паспорта на оборудование.

Зная величину давления, рассчитайте расход в системе:

Q = k x √H

Здесь k — коэффициент расхода. На каждые 10 м² дома профессионалы берут расход в пределах 0,3-0,4 л / с.

Среди составляющих теплого водяного пола особую роль играет циркуляционный насос.Преодолеть сопротивление в трубах может только агрегат, производительность которого на 20% превышает реальный расход теплоносителя.

Цифры, касающиеся величины давления и расхода, указанные в паспорте, нельзя воспринимать буквально — это максимум , но на самом деле на них влияет размер и геометрия сети. Если головка слишком велика, уменьшите длину контура или увеличьте диаметр труб.

В инструкции можно найти информацию о том, что минимальная толщина стяжки составляет 30 мм.Когда помещение достаточно высокое, под стяжкой прокладывают обогреватель, увеличивающий эффективность использования тепла, отдаваемого контуром отопления. Самый популярный материал для подложки — пенополистирол. Его сопротивление теплопередаче намного ниже, чем у бетона.

Когда стяжка используется для компенсации линейного расширения бетона, периметр помещения образуется демпферной лентой. Важно правильно подобрать толщину. Специалисты советуют при площади пола не более 100 м² устраивать компенсационный слой 5 мм.Если площадь больше из-за длины, превышающей 10 м, толщина рассчитывается по формуле: b = 0,55 x L. Обозначение L — это длина помещения в м.

Видео в помощь проектировщикам дома

По расчету и устройству теплого гидравлического пола это видео:

Отсюда вы узнаете много нового о укладке пола и сможете избежать ошибок, которые обычно допускают любители:

Расчет позволяет спроектировать систему «теплый пол» с оптимальными характеристиками.Допустимо монтировать отопление по паспортным данным и рекомендациям. Это сработает, но профессионалы все же советуют потратить время на расчет, в результате система потребляет меньше энергии.

Уютный частный дом — мечта каждого человека. Но как это сделать? Вариантов может быть много: стандартная система отопления, кондиционер или современный теплый пол. Но любой из них требует разработки предварительного проекта.

Если вы решили остановиться на последнем варианте, вам сначала придется рассчитать водяной теплый пол, а затем приступить к его монтажу.Как это сделать, и какие данные потребуются, мы выясним вместе.

Правильный расчет

Если вы решили установить такую ​​систему у себя дома, то учтите, что для того, чтобы название действительно соответствовало названию, требуются точные цифры. Это необходимо, потому что каждый контур пола имеет значительную длину и, как следствие, приличное гидравлическое сопротивление.

Для того, чтобы он работал успешно, вам нужно будет установить на каждом этаже небольшой насос или один, но очень мощный для всей системы.

Чтобы сделать правильный выбор, необходимо учесть:

  • Количество охлаждающей жидкости
  • Требуемое давление

При этом при подсчете необходимо учитывать не только метраж, но и другие важные показатели, влияющие на:

  • Диаметр труб
  • Кол-во ответвлений и подъездов
  • Способ монтажа

Есть и другие возможности получить ответ на вопрос, как правильно рассчитать водяной теплый пол.Расчеты производятся с помощью специальных программ. В этом случае гидравлические свойства регулируются в зависимости от параметров характеристик насоса. Используя этот метод, вы можете маневрировать различными параметрами системы.

Мощность пола — пошаговая инструкция

Для того, чтобы результат оправдал ожидания, необходимо перед монтажом произвести необходимые расчеты. Для этого вам понадобится лист миллиметровой бумаги, карандаш и несколько подсказок.

Итак, расчет мощности теплого водяного пола следует начинать с выполнения на бумаге планировки помещения, с расположением окон и дверей в масштабе 1 см = 0,5 м.

Следующим шагом будет расчет шага и диаметра труб. Они выполняются при соблюдении следующих условий:

  • Максимальная площадь обогрева — не более 20 м², большое помещение делится пополам и на каждую часть рассчитывается свой контур
  • Их подключение производится к отдельному отводу
  • Длина одного круга не может превышать 100 м

При расчете водяного теплого пола необходимо учитывать, что основными местами теплопотерь являются участки возле окон и дверей.Поэтому труба должна располагаться вдоль окна. Расстояние от стен до трубы не может быть больше 25 см.

Один элемент от другого в цепи может располагаться не более 50 см, на это расстояние влияет диаметр.

Для расчета количества труб нужно измерить их длину и полученное значение умножить на коэффициент (позволяет перевести размеры чертежа в реальные). К полученному значению прибавляется 2 м обвязки до стояка.

Следующим шагом будет расчет количества субстрата. Для этого нужно знать площадь комнаты, умножив ее ширину на длину.

В случае сложной поверхности эта формула даст не совсем точные результаты. Поскольку используются песок и цемент, количество необходимо рассчитать. Это будет зависеть от толщины стяжки.

Нюансы в расчетах мощности

Определить все необходимые значения для устройства теплого водяного пола несложно.Однако неспециалисту в этой области лучше не рисковать и выполнять все по инструкции, прилагаемой к каждому набору.

Но если, исходя из площади пола в помещении, вы решите изменить шаг укладки для достижения наилучшего температурного режима, то одного этого будет мало. Еще есть такие понятия, как регулировка и регулировка, от которых зависит микроклимат в помещении.

Эти показатели даже важнее шага труб.Особое внимание на них стоит обратить в случае, если дети постоянно проживают в доме, чтобы создать для них комфортный температурный режим.

При расчетах учитывается также высота и длина всей конструкции. Первый показатель включает в себя сумму высот всех слоев, а самый мощный будет:

Длина — это ярд всех труб, входящих в систему.

При проведении расчетов также учитываются такие аспекты, как пол, на котором расположено помещение, объем его остекления, свойства ограждающих конструкций, тип напольных покрытий, наличие и тип основания. .

Для каждого из этих случаев может потребоваться увеличение мощности системы и проведение дополнительных теплотехнических расчетов.

Основной или дополнительный источник тепла

Теплый водяной пол, расчет которого был рассмотрен выше, имеет массу выгодных отличий от традиционных систем отопления. Он нагревает весь воздух, в отличие от устройств, вызывающих его движение и генерирующих конвекционные токи.

Работа системы основана на передаче горячей воды по трубопроводу, при этом ее максимальный предел составляет 50 ° C, и этого достаточно для поддержания комфортного микроклимата в помещении.

Такой обогрев не вызывает ожогов и не отводит воздух, а тепловая мощность водяного пола достаточно высока.

Может использоваться как основной или дополнительный источник тепла. Как это зависит от характеристик помещения и, в первую очередь, от его теплопотерь. Если они незначительны, то систему можно использовать как основную, при больших значениях она не оправдывает затрат и может использоваться только как

Как рассчитать лучистое тепло? — Мворганизация.org

Как рассчитать лучистое тепло?

Лучистая тепловая нагрузка

  1. Вычислите отапливаемую площадь в квадратных метрах. Площадь (м2) = Длина (м) x Ширина (м)
  2. Из приведенной выше таблицы выберите коэффициент, который наиболее точно соответствует типу здания. Тепловая нагрузка (кВт) = Площадь (м2) x коэффициент.
  3. Выберите инфракрасные лучистые обогреватели Activair, которые соответствуют или немного превышают требуемую тепловую нагрузку.

Как выбрать лучистый теплый пол?

Чтобы определить размер источника тепла, просто умножьте тепловые потери на квадратный фут на площадь (в кв.ноги). Вам понадобится нагреватель или бойлер с такой номинальной мощностью. Ваш подрядчик должен подтвердить этот расчет.

Какая температура лучше всего подходит для теплого пола?

около 75 F

Сколько Btus мне нужно для водяного теплого пола?

Типичная мощность водяной системы лучистого отопления жилых домов находится в пределах 25-35 БТЕ на квадратный фут, при этом 40 БТЕ — это редкий случай для старых домов и зданий с плохой изоляцией. 2. 12 Вт на квадратный фут составляет приблизительно 41 БТЕ на квадратный фут (оптимальная тепловая мощность при достаточной резервной мощности).

Как рассчитать БТЕ для теплого пола?

Вычтите температуру подаваемой воды из температуры обратной воды, чтобы найти изменение температуры системы. Чтобы найти систему, поставляемую в британских тепловых единицах, умножьте постоянную британских тепловых единиц на 500 x расчетное значение насоса (галлонов в минуту) на изменение температуры системы. Щелкните, чтобы увидеть полный ответ.

Сколько БТЕ бойлера Мне нужен калькулятор?

Простое практическое правило для требований BTU — это вычислить, что вам нужно около 50 BTU на квадратный фут внутреннего пространства в холодном климате; 35 БТЕ на квадратный фут в умеренном климате; и 20 БТЕ на квадратный фут в жарком климате.

Какой размер водонагревателя мне нужен для лучистого тепла?

Какой большой водонагреватель вам нужен для лучистого тепла? К сожалению, существует множество факторов, влияющих на размер водонагревателя, используемого для обогрева полов. Средняя необходимая мощность составляет 25 БТЕ на квадратный фут, но она может быть больше или меньше в зависимости от ваших обстоятельств.

PEX какого размера мне следует использовать для лучистого тепла?

Наиболее распространенные размеры труб PEX для систем лучистого отопления — 3/8 дюйма, 1/2 дюйма, 5/8 дюйма и 3/4 дюйма.Как правило, для жилых систем излучающего тепла мы рекомендуем трубы из полиэтиленгликоля 1/2 дюйма. Размер трубки PEX определяет достижимую скорость потока и, следовательно, максимальную длину петли трубки Pex.

Почему PEX запрещен в Калифорнии?

PEX был запрещен в Калифорнии из-за некоторых опасений по поводу утечки токсичных материалов через трубу в воду. С помощью различных национальных лабораторных испытаний PEX доказал свою полную безопасность и долговечность.

Могу ли я использовать обычный полиэтиленгликоль для лучистого тепла?

Могу ли я использовать трубы PEX для систем лучистого или водяного тепла? Да, труба PEX одобрена для использования в системах лучистого или водяного отопления.Поскольку в системе могут присутствовать компоненты из черных металлов, важно использовать трубу PEX с кислородным барьером, чтобы предотвратить ржавление компонентов из железа.

Какие недостатки у PEX?

Недостатки сантехники PEX

  • PEX может выщелачивать BPA и другие токсичные химические вещества.
  • PEX чрезвычайно чувствителен к ультрафиолетовому излучению.
  • PEX может быть поврежден химическими веществами и вредителями.
  • PEX нельзя устанавливать в зонах с высокой температурой.
  • PEX является полупроницаемым, что означает, что жидкость может попасть в трубу.

Подходит ли синий PEX для горячей воды?

Голубая труба PEX предназначена для подачи холодной воды. Белая труба PEX может использоваться как для горячей, так и для холодной воды. Например, не возникнет проблем с использованием синего PEX для линий горячей воды или красного PEX для линий холодной воды. Другие типы PEX включают PEX-Aluminium-PEX, который часто имеет оранжевый цвет, и PEX для регенерированной воды, который обычно имеет фиолетовый цвет.

Как долго прослужит PEX?

100 лет

Что мне использовать: PEX-A или PEX B?

PEX-A является наиболее гибким из всех типов трубок PEX, имеет небольшую память катушек или вообще не имеет ее и дает установщику возможность устранять перегибы с помощью теплового пистолета.PEX-B — явный победитель с точки зрения цены по сравнению с обоими другими типами.

Могу ли я закопать трубу PEX?

Трубка

PEX одобрена для непосредственного захоронения на открытом воздухе, что чаще всего необходимо при прокладке водопровода в дом. PEX, поскольку он может расширяться, противостоит замерзанию более эффективно, чем жесткая труба, но PEX все равно может лопнуть, если вода замерзнет в трубопроводе. Засыпка PEX в песок защищает его от любых камней в почве.

Какой тип PEX лучше всего подходит для подземных работ?

Полиэтилен высокой плотности

Где нельзя использовать PEX?

Pex не допускается в коммерческих или промышленных зданиях и, следовательно, в жилых зданиях, считающихся «коммерчески-промышленными».

Следует ли изолировать трубы PEX?

Нужна ли изоляция трубы PEX? Да, хотя трубы PEX могут выдерживать отрицательные температуры лучше, чем трубы из других материалов, но они не являются морозостойкими! Если температура упадет ниже 20 градусов по Фаренгейту, ваши трубы могут замерзнуть.

Распыляемая пена плохо подходит для труб из полиэтиленгликолята?

Стабильность трубы PEX не должна подвергаться опасности, если герметики GREAT STUFF ™ и GREAT STUFF PRO ™ нанесены в соответствии с инструкциями производителя вокруг трубы.Однако адгезия между любой полиуретановой пеной для распыления и поверхностями PEX сомнительна.

Можете ли вы использовать горячий и холодный PEX одновременно?

Линии горячей и холодной воды PEX проходят через одно и то же отверстие в каркасной стене. Это нетипичная установка; обе трубы должны иметь собственные отверстия для прохождения через каркас.

Как подготовить PEX к зиме?

Способы предотвращения замерзания труб из PEX

  1. Поддерживайте температуру в помещении выше 55 F.
  2. Добавьте теплоизоляцию в особо холодные места, такие как чердаки, гаражи и подвалы.
  3. Смесители для удержания воды в трубах.
  4. Перекройте подачу воды к внешним насадкам шланга (патрубкам) ​​и слейте воду из труб.
  5. Установить незамерзающие пороги.

При какой температуре замерзают трубы PEX?

20 градусов по Фаренгейту

Трескается ли труба PEX при замерзании?

Q: Разорвется ли труба PEX, если она замерзнет? О: Нет, труба PEX устойчива к замораживанию, это означает, что труба будет расширяться при замораживании и сжиматься до своей первоначальной формы при оттаивании.Однако труба PEX не является морозостойкой, а это означает, что вода в трубе может замерзнуть и заблокировать поток.

Каков срок службы фитингов SharkBite?

25 лет

Укусы акул когда-нибудь терпят неудачу?

Предрасположены ли фитинги Sharkbite к выходу из строя? да. Но вся фурнитура при неправильной установке.

Укусы акулы так же хороши, как припой?

Пока они кажутся такими же надежными, хотя, учитывая, что они присутствуют на рынке всего несколько лет, у них нет такой же истории, как у паяных соединений.Наконец, вы действительно не хотите использовать их для открытых труб, паяные соединения намного аккуратнее.

Можно ли использовать SharkBite в горячей воде?

Фитинги

SharkBite могут использоваться как на линиях горячего, так и на холодном водоснабжении. Фитинги достаточно прочные, чтобы их можно было установить на водопровод внутри стен, и служат столько же, сколько и медные фитинги. SharkBite можно использовать на трубах из меди, ХПВХ и PEX, что делает его одним из самых универсальных доступных типов фитингов.

Borst Engineering & Construction LLC

Гидравлическая смесь жидкостей (% пропиленгликоль / вода)
Расчетная температура сухого термометра на открытом воздухе (град. F)
Расчетная температура сухого термометра в помещении (градусы F) — зона 1
Допустимое падение температуры контура (рекомендуется градус F, 15 или меньше) — зона 1
Обогреваемая зона (SF) — Зона 1
Разблокированная отапливаемая зона (SF) — Зона 1
Общие тепловые потери (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 1
Потери тепла на открытом воздухе (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 1
Требуемая длина выноски до станции коллектора (футы) — зона 1
Номинальный диаметр трубки (дюймы, 0.25, 0,375, 0,5, 0,625, 0,75, 1,0) — Зона 1
Тип трубки (0 = PEX, 1 = PEX-AL-PEX) — зона 1
Тип сборки пола (0 = плита на уровне пола, 1 = тонкая плита, 2 = над полом, 3 = под полом) — зона 1
Значение R поверхности пола (градусы F-H-SF / BTU) — зона 1
Фактическое расстояние между трубками (дюймы, 0 = рекомендуется, см. Инструкции) — зона 1
Фактическое количество контуров (0 = рекомендуется, см. Инструкции) — зона 1
Дополнительный прирост тепла (БТЕ / день) — зона 1
Настройка коэффициента расхода балансировочного клапана (см. Инструкции) — зона 1
Расчетная температура сухого термометра в помещении (градус F) — зона 2
Допустимое падение температуры контура (рекомендуется градус F, 15 или меньше) — зона 2
Обогреваемая зона (SF) — Зона 2
Разблокированная отапливаемая зона (SF) — Зона 2
Общие тепловые потери (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 2
Потери тепла на открытом воздухе (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 2
Требуемая длина выноски до станции коллектора (футы) — зона 2
Номинальный диаметр трубки (дюймы, 0.25, 0,375, 0,5, 0,625, 0,75, 1,0) — Зона 2
Тип трубки (0 = PEX, 1 = PEX-AL-PEX) — зона 2
Тип сборки пола (0 = плита на уровне пола, 1 = тонкая плита, 2 = над полом, 3 = под полом) — Зона 2
Значение R поверхности пола (градусы F-H-SF / BTU) — зона 2
Фактическое расстояние между трубками (дюймы, 0 = рекомендуется, см. Инструкции) — зона 2
Фактическое количество контуров (0 = рекомендуется, см. Инструкции) — зона 2
Дополнительный прирост тепла (БТЕ / день) — Зона 2
Настройка коэффициента расхода балансировочного клапана (см. Инструкции) — зона 2
Расчетная температура сухого термометра в помещении (градусы F) — зона 3
Допустимое падение температуры контура (рекомендуется градус F, 15 или меньше) — зона 3
Обогреваемая зона (SF) — Зона 3
Разблокированная отапливаемая зона (SF) — Зона 3
Общие тепловые потери (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 3
Потери тепла на открытом воздухе (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 3
Требуемая длина выноски до станции коллектора (футы) — зона 3
Номинальный диаметр трубки (дюймы, 0.25, 0,375, 0,5, 0,625, 0,75, 1,0) — Зона 3
Тип трубки (0 = PEX, 1 = PEX-AL-PEX) — зона 3
Тип сборки пола (0 = плита на уровне пола, 1 = тонкая плита, 2 = над полом, 3 = под полом) — Зона 3
R-значение поверхности пола (градусы F-H-SF / BTU) — зона 3
Фактическое расстояние между трубками (дюймы, 0 = рекомендуется, см. Инструкции) — зона 3
Фактическое количество контуров (0 = рекомендуется, см. Инструкции) — зона 3
Дополнительный прирост тепла (БТЕ / день) — Зона 3
Настройка коэффициента расхода балансировочного клапана (см. Инструкции) — зона 3
Расчетная температура сухого термометра в помещении (градус F) — зона 4
Допустимое падение температуры контура (рекомендуется градус F, 15 или меньше) — зона 4
Обогреваемая зона (SF) — Зона 4
Разблокированная отапливаемая зона (SF) — зона 4
Общие тепловые потери (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 4
Потери тепла на открытом воздухе (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 4
Требуемая длина выноски от станции коллектора (футы) — зона 4
Номинальный диаметр трубки (дюймы, 0.25, 0,375, 0,5, 0,625, 0,75, 1,0) — Зона 4
Тип трубки (0 = PEX, 1 = PEX-AL-PEX) — зона 4
Тип сборки пола (0 = плита на уровне пола, 1 = тонкая плита, 2 = над полом, 3 = под полом) — Зона 4
Значение R поверхности пола (градусы F-H-SF / BTU) — зона 4
Фактическое расстояние между трубками (дюймы, 0 = рекомендуется, см. Инструкции) — зона 4
Фактическое количество контуров (0 = рекомендуется, см. Инструкции) — зона 4
Дополнительный прирост тепла (БТЕ / день) — Зона 4
Настройка коэффициента расхода балансировочного клапана (см. Инструкции) — зона 4
Расчетная температура сухого термометра в помещении (градус F) — зона 5
Допустимое падение температуры контура (рекомендуется градус F, 15 или меньше) — зона 5
Обогреваемая зона (SF) — Зона 5
Разблокированная отапливаемая зона (SF) — зона 5
Общие тепловые потери (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 5
Потери тепла на открытом полу (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 5
Требуемая длина выноски до станции коллектора (футы) — зона 5
Номинальный диаметр трубки (дюймы, 0.25, 0,375, 0,5, 0,625, 0,75, 1,0) — Зона 5
Тип трубки (0 = PEX, 1 = PEX-AL-PEX) — зона 5
Тип сборки пола (0 = плита на уровне пола, 1 = тонкая плита, 2 = над полом, 3 = под полом) — Зона 5
Значение R поверхности пола (градусы F-H-SF / BTU) — зона 5
Фактическое расстояние между трубками (дюймы, 0 = рекомендуется, см. Инструкции) — зона 5
Фактическое количество контуров (0 = рекомендуется, см. Инструкции) — зона 5
Дополнительный прирост тепла (БТЕ / день) — Зона 5
Настройка коэффициента расхода балансировочного клапана (см. Инструкции) — зона 5
Расчетная температура сухого термометра в помещении (градусы F) — зона 6
Допустимое падение температуры контура (рекомендуется градус F, 15 или меньше) — зона 6
Обогреваемая зона (SF) — зона 6
Разблокированная отапливаемая зона (SF) — зона 6
Общие тепловые потери (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 6
Потери тепла на открытом воздухе (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 6
Требуемая длина выноски до станции коллектора (футы) — зона 6
Номинальный диаметр трубки (дюймы, 0.25, 0,375, 0,5, 0,625, 0,75, 1,0) — Зона 6
Тип трубки (0 = PEX, 1 = PEX-AL-PEX) — зона 6
Тип сборки пола (0 = плита на уровне пола, 1 = тонкая плита, 2 = над полом, 3 = под полом) — зона 6
Значение R поверхности пола (градусы F-H-SF / BTU) — зона 6
Фактическое расстояние между трубками (дюймы, 0 = рекомендуется, см. Инструкции) — зона 6
Фактическое количество контуров (0 = рекомендуется, см. Инструкции) — зона 6
Дополнительный прирост тепла (БТЕ / день) — зона 6
Настройка коэффициента расхода балансировочного клапана (см. Инструкции) — зона 6
Расчетная температура сухого термометра в помещении (градусы F) — зона 7
Допустимое падение температуры контура (рекомендуется градус F, 15 или меньше) — зона 7
Обогреваемая зона (SF) — зона 7
Разблокированная отапливаемая зона (SF) — зона 7
Общие тепловые потери (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 7
Потери тепла на открытом воздухе (БТЕ / час, из калькулятора анализа тепловых потерь) — Зона 7
Требуемая длина выноски до станции коллектора (футы) — зона 7
Номинальный диаметр трубки (дюймы, 0.25, 0,375, 0,5, 0,625, 0,75, 1,0) — Зона 7
Тип трубки (0 = PEX, 1 = PEX-AL-PEX) — зона 7
Тип сборки пола (0 = плита на уровне пола, 1 = тонкая плита, 2 = над полом, 3 = под полом) — Зона 7
Значение R поверхности пола (градусы F-H-SF / BTU) — зона 7
Фактическое расстояние между трубками (дюймы, 0 = рекомендуется, см. Инструкции) — зона 7
Фактическое количество контуров (0 = рекомендуется, см. Инструкции) — зона 7
Дополнительный прирост тепла (БТЕ / день) — зона 7
Настройка коэффициента расхода балансировочного клапана (см. Инструкции) — зона 7
Точка данных кривой производительности насоса # 1 (расход в галлонах в минуту, 0.0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 2 (расход в галлонах в минуту, 1,0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 3 (расход в галлонах в минуту, 2,0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 4 (расход в галлонах в минуту, 3,0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса # 5 (расход в галлонах в минуту, 4.0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса №6 (расход в галлонах в минуту, 5,0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 7 (расход в галлонах в минуту, 6.0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 8 (расход в галлонах в минуту, 7,0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса # 9 (расход в галлонах в минуту, 8.0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса №10 (расход в галлонах в минуту, 9,0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса №11 (расход в галлонах в минуту, 10,0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса №12 (расход в галлонах в минуту, 12,0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса # 13 (расход в галлонах в минуту, 14.0 для Grundfos UP15-42F)
Точка данных кривой производительности насоса №14 (расход в галлонах в минуту, 16,8 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 1 (напор в футах, 14,9 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 2 (напор в футах, 14,4 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 3 (напор в футах, 13.8 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 4 (напор в футах, 13,1 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 5 (напор в футах, 12,6 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 6 (напор в футах, 11,9 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 7 (напор в футах, 11.1 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 8 (напор в футах, 10,4 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 9 (напор в футах, 9,7 для Grundfos UP15-42F)
Точка данных кривой производительности насоса # 10 (напор в футах, 8,8 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 11 (напор в футах, 7.9 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 12 (напор в футах, 5,8 для Grundfos UP15-42F)
Точка данных кривой производительности насоса № 13 (напор в футах, 3,5 для Grundfos UP15-42F)
Точка данных кривой производительности насоса # 14 (напор в футах, 0,0 для Grundfos UP15-42F)
Фактическая температура подачи тепла (введите «0», чтобы использовать расчетную, или введите фактическую, градусы F)

Как определить правильный размер трубок и расстояние между ними для вашего проекта

Трубки являются неотъемлемой частью любой системы водяного лучистого отопления.Как и вены, он переносит теплую жидкость и тепло по полу, превращая их в удобные теплые поверхности. Мы предлагаем лучшие трубки из PEX и PERT для наших гидравлических систем, доступные в различных размерах от 3/8 ″ до 1 ″. Эти трубки обеспечивают отличные характеристики в излучающих системах и предоставляют разработчику системы самые большие возможности для выбора компонентов. Имея пять доступных размеров, как узнать, какой из них лучше всего подходит для вашего проекта? Эти общие правила могут помочь.Трубки
PEX и PERT бывают разных размеров. Наиболее распространены размеры 3/8 ″, 1/2 ″, 5/8 ″ и 3/4 ″. Как правило, для системы обогрева пола в жилых помещениях мы рекомендуем трубы 3/8 ″ и 1/2 ″. Размер трубки определяет скорость потока, которая может быть достигнута, а также указывает максимальную длину контура в зависимости от напора. Обычно мы рекомендуем трубки 5/8 ″ и 3/4 ″ для крупных коммерческих предприятий и при таянии снега.

Такие факторы, как размер трубок, расстояние между трубками и температура воды, напрямую представляют тепловую мощность (в BTH / кв.футов / час) системы лучистого отопления. Последнее особенно важно, поскольку расчет потерь тепла является начальным этапом каждого проекта лучистого отопления и позволяет установщику определить, какой размер трубы использовать и какой длины будет максимальная длина.

Для увеличения производительности пола для выбранных размеров и длины трубок может потребоваться увеличение потока, расстояние между трубками может быть ближе друг к другу или повышение температуры воды. Например, увеличив поток через трубку PEX 1/2 ″ только на 0.1 галлон в минуту, выходная мощность увеличится до 5 БТЕ / кв. фут / час

С трубкой 1/2 ″ 6 ″ шаблон иногда используется в небольших помещениях, таких как ванные комнаты, и для экстремально холодного климата, в то время как узоры 8 ″ и 9 ″ являются стандартными для большинства жилых помещений в большинстве климатов, а 12 ″. узор используется в гаражах. Для большинства крупных магазинов и небольших коммерческих предприятий обычно используются трубки 5/8 ″ с кислородным барьером из PEX или InfloorPERT®. Для трубок диаметром 5/8 дюймов стандартным является шаблон от 9 до 12 дюймов. Для больших магазинов и больших коммерческих зданий (обычно более 5000 квадратных футов) кислородная трубка 3/4 дюйма является стандартной.Для трубок диаметром 3/4 дюйма используется расстояние 12 дюймов или 18 дюймов, в зависимости от климата и желаемой температуры помещения.

Теперь, когда вы выбрали размер и расстояние между трубами для своего проекта, просто умножьте квадратные метры обогреваемого пространства на один из следующих множителей, чтобы определить общий линейный метр трубы, который вам понадобится. Обязательно используйте правильный множитель, который соответствует выбранному вами интервалу:
6 ″ интервал = кв. Футов x 2,0
8 ″ интервал = кв.фут x 1,5
9 ″ интервал = квадратный фут x 1,34
12 ″ интервал = квадратный фут x 1,0
18 ″ интервал = квадратный фут x 0,67

После того, как вы определили фактическую общую длину трубок, которые вам понадобятся, следующим шагом будет определение количества петель или контуров труб. Для трубок 1/2 дюйма длина контура 300 футов является стандартной, но контуры от 250 до 350 футов находятся в пределах диапазона, рекомендованного ассоциацией Radiant Panel Association. С трубкой 5/8 ″ 400 ′ и 3/4 ″ трубки 500 ′ контуры являются стандартными.Например, если вы используете трубку 1/2 дюйма и определили, что вам потребуется 900 футов трубки, у вас будет три контура по 300 футов каждая и трехпортовый коллектор. Если вы используете трубку 5/8 дюйма и определили, что вам потребуется 3000 футов трубки, у вас будет восемь контуров по 375 футов каждая и восьмипортовый коллектор.

Мы ответим на любые Ваши вопросы по дизайну. Мы также предлагаем бесплатные услуги по проектированию в составе продаваемых нами систем. Свяжитесь с нами сегодня чтобы начать. www.infloor.com

Максимальная длина участка трубопровода:
3/8 дюйма Петли трубки не должны превышать 200 футов
1/2 дюйма Петли трубки не должны превышать 300 футов
5/8 дюйма Петли трубки не должны превышать 400 футов
3/4 дюйма Петли трубок не должны превышать 500 ′


Присоединяйтесь к нашему онлайн-сообществу и оставайтесь в курсе событий с Infloor Heating Systems:

5-ступенчатый расчет тепловых потерь

Расчет тепловой нагрузки необходим до начала установки системы лучистого отопления, поскольку разные типы систем лучистого отопления имеют разные значения мощности в БТЕ.
Типичный расчет тепловой нагрузки состоит из расчета поверхностных тепловых потерь и тепловых потерь из-за инфильтрации воздуха. И то, и другое следует делать отдельно для каждой комнаты в доме, поэтому неплохо начать с плана этажа с размерами всех стен, полов, потолка, а также дверей и окон.

Ниже приведен пример 5-шагового руководства по расчету поверхностных тепловых потерь:

Шаг 1 — Расчет дельты T (расчетная температура):

Дельта T — это разница между расчетной температурой в помещении (T1) и расчетной температурой снаружи (T2), при этом расчетная температура в помещении обычно составляет 68-72 ° F в зависимости от ваших предпочтений, а расчетная температура наружного воздуха является типичным минимумом в течение отопительного сезона.Первый можно получить, позвонив в местную коммунальную компанию.
Предполагая, что T1 равно 72F, а T2 равно –5F, Delta T = 72F - (-5F) = 72F + 5F = 77F


Шаг 2 — Расчет площади поверхности:

Если расчет выполняется для внешней стены с окнами и дверями, расчет теплопотерь окна и двери должен выполняться отдельно.

Площадь стены = Высота x Ширина — Поверхность двери — Площадь окна
Площадь стены = 8 футов x 22 фута - 24 квадратных фута - 14 квадратных футов = 176 квадратных футов - 38 квадратных футов = 138 квадратных футов


Шаг 3 — Рассчитайте U-значение:

Используйте руководство «Типичные значения R и U» для получения значения R стены.

Значение U = 1 / значение R
Значение U = 1 / 14,3 = 0,07


Шаг 4 — Расчет теплопотерь поверхности стены:

Потери тепла с поверхности можно рассчитать по следующей формуле:

Поверхностные тепловые потери = U-значение x Площадь стены x Дельта T
Поверхностные тепловые потери = 0,07 x 138 квадратных футов x 77F = 744 BTUH
(U-значение основано на предположении, что деревянная каркасная стена 2×4 со стекловолокном 3,5 дюйма изоляция)


Шаг 5 — Рассчитайте общую потерю тепла стеной:

Выполните шаги с 1 по 4, чтобы рассчитать теплопотери отдельно для окон, дверей и потолка.
Теплопотери двери = 0,49 x 24 кв. Фута x 77F = 906 BTUH
(значение U основано на предположении, что дверь из цельного дерева)
Потери тепла на окне = 0,65 x 14 кв. Футов x 77F = 701 BTUH
(Значение U основано на предположении, что окно состоит из двух панелей)
Потери тепла на потолке = 0,05 x 352 квадратных фута x 77F = 1355 BTUH
(Значение U основано на предположении, что изоляция из стекловолокна 6 дюймов. 22 футов x 16 футов)

Теперь сложите все числа вместе:
Общие тепловые потери стены = Потери стены + Потери окна + Потери двери + Потери потолка
Общие тепловые потери стены = 744 BTUH + 906 BTUH + 701 BTUH + 1352 BTUH = 3703 BTUH


Всегда следует учитывать скорость инфильтрации воздуха.
Для расчета потерь тепла в помещении из-за инфильтрации воздуха можно использовать следующую формулу:

Потери тепла при инфильтрации воздуха = Объем помещения x Дельта теплоносителя x Изменение количества воздуха в час x 0,018
Где объем помещения = длина x ширина x высота

изменения воздуха в час учитывают утечку воздуха в комнату.

Leave a reply

Ваш адрес email не будет опубликован.