Полистеролбетоновые блоки вес: Масса полистиролбетонных блоков — Справочник массы

Содержание

фото, технические характеристики, преимущества и недостатки, отзывы, видео

Полистиролбетонные блоки – это современное поколение строительных материалов. Они используются при устройстве теплоэффективных домов, которые отвечают стандарту СНиП.

Описание полистиролбетонных блоков и их характеристики

Сам материал по структуре похож на легкий бетон и сочетает в себе пористый заполнитель, модифицированные добавки и цемент. По составу — это уникальный продукт на рынке строительных материалов.

Блоки из полистиролбетона, согласно требованиям ГОСТ Р 51263-99, имеют такое применение:

  • Теплоизоляционные плиты. Материал с плотностью D150 — D250 и прочностью на сжатие: М2-М3,5;
  • Сплошные блоки (в зависимости от типа стен). Плотность D250 — D 600 и прочность В0,5 – В2,5;
  • Пустотелые детали. Плотность D250 – D350 и прочность на сжатие М5, В0,5 – В1,0;
  • Монолитная конструкция с теплоизоляцией. Плотность от D150 до D250 и прочность М2 — М5.

Область применения по стандарту ГОСТ Р 51263:

  • Теплоизоляционные (плиты и монолит). Область применения: теплоизоляция покрытий и чердачных помещений, цоколей, фундамента. Плотность марки D150 — D225;
  • Конструкционно-теплоизоляционные (перемычки, монолит, блоки). Область применения: любого типа наружные стены в строительстве малоэтажных домов. Плотность D400 – D600.
  • Теплоизоляционно-конструкционные (блоки, монолит, доборные части). Область применения: несущие стены многоэтажных и малоэтажных зданий. Плотность D250 – D350.

Для изготовления пенополистиролбетонных блоков лучше использовать метод прессовки, а еще лучше вибропрессовки, материала. Это в разы повышает его устойчивость, а значит срок службы.

Состав блоков

В состав раствора для полистиролбетонных блоков входят следующие компоненты:

  • Шлакопортландцемент или портландцемент;
  • Воздухововлекающие добавки и способствующие быстрому твердению;
  • Вспененный полистирол;
  • Кварцевый песок.

Полистирол, выпускающийся в форме гранул, снижает коэффициент теплопроводности у конечного продукта. Заводы-производители, выпускающие данные блоки, должны соблюдать такие стандарты качества: ГОСТ Р 51263-99, ГОСТ 21520-89, ГОСТ 25820-2000 и ГОСТ 25192-82.

Так на фото выглядит срез готового полистиролбетонного блока 

Виды блоков

Блоки из полистиролбетона обладают рядом неоспоримых преимуществ, на которых и основывается их широкая популярность. Кроме того они бывают разных видов, которые могут использоваться как для отделки стен, так и для возведения перегородок.

Блоки с облицовкой

Материал широко применяется при строительстве и отделке зданий и сооружений. Благодаря ему нет необходимости проводить дополнительную работу над фасадом.

Такие блоки отличаются не только высокой прочностью, но и привлекательным внешним видом. Глянцевая поверхность может имитировать разнообразные фасадные материалы и иметь богатую цветовую гамму.

Облицовочные блоки популярны по нескольким причинам:

  • Крепление облицовки производится без клеящего состава.
  • Облицовочный слой глубоко проникает в пористую структуру материала.
  • Облицовка может имитировать от структуры обычного камня до мрамора.
  • Блоки с облицовкой способны противостоять любым погодным условиям.

Стеновые блоки

Популярность домов с высокой энергоэффективностью обусловила интерес застройщиков к полистиролбетонным блокам. Стены из них не нуждаются в дополнительных мерах по утеплению и обходятся до двух раз дешевле, чем из кирпича или ячеистого бетона.

Теплосберегающие свойства соответствуют всем нормам СНиП жилого, промышленного и многоэтажного строительства. Кроме этого блоки обладают высокой прочностью, простотой обработки и высокими показателями тепло- и звуко защиты.

Стеновые блоки имеют достаточную устойчивость к возгоранию, а при дополнительной облицовке кирпичом могут относиться к первой категории пожароустойчивости. Кроме этого они устойчивы к воздействию негативных факторов: погодные условия, кислоты, щелочи, плесень, грибок, грызуны.

Отсутствие арматуры из стали не искажает радиоволны и геомагнитное поле дома.

Еще несколько слов о том,почему потребители выбирают именно полистиролбетонные блоки:

Классификация и характеристики блоков

При изготовлении полистиролбетона завод-производитель должен выпускать продукцию, соответствующую по параметрам стандарту, ГОСТ, который касается характеристик блоков из ячеистого бетона.

Размеры конечного продукта могут варьироваться:

  • Длина 28,8 – 59,8 см;
  • Высота 8,8 – 29,8 см;
  • Толщина 19,5 – 30 см.

Наиболее востребованными остаются блоки:

  • Стеновые 58,8*30*18,8 см;
  • Перегородочные 58,8*60*9,2 см;
  • Стеновые 58,8*38*30 см;
  • Перемычки 38*30*130 см.

Вес перегородочных блоков может быть в пределах 5-15 кг, а стеновых – 5-30 кг.

Преимущества:

  • Срок службы более ста лет.
  • Высокие теплоизоляционные свойства.
  • Хорошая звукоизоляция.
  • Легкий вес позволяет использовать не дорогостоящие фундаменты.
  • Простота обработки (блокам можно придать любые размеры и форму).
  • Устойчивость к разному роду негативным воздействиям.
  • Высокая устойчивость к влаге и трещинам.

Недостатки:

  • При долгом воздействии огня (свыше 300оС) из блоков начинает выделяться стирол.
  • Конечный продукт должен полностью отвечать санитарным требованиям, поскольку в его состав входят химические компоненты.

Отзывы потребителей

Сергей, 42 года. Санкт-Петербург. Недавно построил дом из этих блоков, полностью доволен. За невысокую стоимость получил достаточно прочный материал.

Антон, 55 лет. Саратов. Всю жизнь работаю строителем и не понаслышке знаю о строительных материалах. Полистиролбетон выделяют от прочих стройматериалов высокие показатели по морозоустойчивости, а также простота в работе.

Виктор, 40 лет. Москва. Около пяти лет назад построил себе загородный дом из этих блоков. За все время недостатков не заметил, лишь одни преимущества.

Еще больше мнений и отзывов о полистиролбетонных блоках, а также разбор их плюсов и минусов:

Полистиролбетон: сфера применения материала

ШАГ 1. План дома

Расчет общей длины стен

Добавить параллельные оси между А-Г
012

Добавить перпендик. оси между Б-Г
012

Добавить перпендик. оси между В-Г
012

Добавить перпендик. оси между Б-В
012

Добавить перпендик. оси между А-Б
012

Размеры дома

Внимание! Наружные стены по осям А и Г являются несущими (нагрузки от крыши и плит перекрытия).

Длина А-Г, м

Длина 1-2, м

Колличество этажей
1 + чердачное помещение2 + чердачное помещение3 + чердачное помещение

ШАГ 2. Сбор нагрузок

Крыша

Форма крыши
ДвускатнаяПлоская

Материал кровли
ОндулинМеталлочерепицаПрофнастил, листовая стальШифер (асбестоцементная кровля)Керамическая черепицаЦементно-песчанная черепицаРубероидное покрытиеГибкая (мягкая) черепицаБитумный листКомпозитная черепица

Снеговой район РФ
1 район — 80 кгс/м22 район — 120 кгс/м23 район — 180 кгс/м24 район — 240 кгс/м25 район — 320 кгс/м26 район — 400 кгс/м27 район — 480 кгс/м28 район — 560 кгс/м2

Наведите курсор на нужный участок карты для увеличения.

Чердачное помещение (мансарда)

Отделка фасадов
Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен (фронтонов)
Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен
Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия
Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Эксплуатационная нагрузка, кг/м2
90 кг/м2 — для холодного чердака195 кг/м2 — для жилой мансарды

3 этаж

Высота 3-го этажа, м
м

Отделка фасадов
Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен
Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен
Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия
Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

2 этаж

Высота 2-го этажа, м
м

Отделка фасадов
Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен
Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен
Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия
Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

1 этаж

Высота 1-го этажа, м
м

Отделка фасадов
Не учитыватьКирпич лицевой 250х120х65Кирпич лицевой фактурный 250х60х65Клинкерная фасадная плиткаДоски из фиброцементаИскуственный каменьПриродный каменьДекоративная штукатуркаВиниловый сайдингФасадные панели

Материал наружних стен
Оцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал внутренних стен
Не учитыватьОцилиндрованное бревно, 220ммОцилиндрованное бревно, 240ммОцилиндрованное бревно, 260ммОцилиндрованное бревно, 280ммБрус 150х150, 150ммБрус 200х200, 200ммКаркасные стены, 150ммСИП-панели, 174ммЛСТК, 200ммКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич пустотелый (30%), 250ммКирпич пустотелый (30%), 380ммКирпич пустотелый (30%), 510ммПоризованные блоки (теплая керамика), 250ммПоризованные блоки (теплая керамика), 380ммПоризованные блоки (теплая керамика), 440ммПоризованные блоки (теплая керамика), 510ммГазобетон D300, 300ммГазобетон, пенобетон D400, 200ммГазобетон, пенобетон D400, 300ммГазобетон, пенобетон D400, 400ммГазобетон, пенобетон D500, 200ммГазобетон, пенобетон D500, 300ммГазобетон, пенобетон D500, 400ммГазобетон, пенобетон D600, 200ммГазобетон, пенобетон D600, 300ммГазобетон, пенобетон D600, 400ммПенобетон D800, 200ммПенобетон D800, 300ммПенобетон D800, 400ммАрболит D600, 300ммАрболит D600, 400ммКерамзитобетонный блок полнотелый, 200ммКерамзитобетонный блок полнотелый, 300ммКерамзитобетонный блок полнотелый, 400ммКерамзитобетонный блок полнотелый, 500ммКерамзитобетонный блок полнотелый, 600ммКерамзитобетонный блок пустотелый, 100ммКерамзитобетонный блок пустотелый, 200ммКерамзитобетонный блок пустотелый, 300ммКерамзитобетонный блок пустотелый, 400ммКерамзитобетонный блок пустотелый, 500ммКерамзитобетонный блок пустотелый, 600ммМонолитная стена, 150ммМонолитная стена, 200ммМонолитная стена, 150ммМонолитная стена, 200мм

Материал перекрытия
Железобетонное монолитное, 200ммЖелезобетонное монолитное, 150ммПлиты перекрытия бетонные многопустотные, 220ммПлиты перекрытия бетонные многопустотные (облегченные), 160ммПлиты перекрытия бетонные сплошные, 160ммПолы по грунтуЧердачное по деревяным балкам с утеплителем до 200 кг/м3Чердачное по деревяным балкам с утеплителем до 500 кг/м3Цокольное по деревянным балкам с утеплителем до 200 кг/м3Цокольное по деревянным балкам с утеплителем до 500 кг/м3

Цоколь

Высота цоколя, м
м

Материал цоколя
Не учитыватьКирпич полнотелый, 250ммКирпич полнотелый, 380ммКирпич полнотелый, 510ммКирпич полнотелый, 640ммКирпич полнотелый, 770ммЖелезобетонное монолитное, 200ммЖелезобетонное монолитное, 300ммЖелезобетонное монолитное, 400ммЖелезобетонное монолитное, 500ммЖелезобетонное монолитное, 600ммЖелезобетонное монолитное, 700ммЖелезобетонное монолитное, 800мм

Внутренняя отделка

Общая толщина стяжки, мм
Не учитывать50мм100мм150мм200мм250мм300мм

Выравнивание стен
Не учитыватьШтукатурка, 10ммШтукатурка, 20ммШтукатурка, 30ммШтукатурка, 40ммШтукатурка, 50ммГипсокартон, 12мм

Распределение нагрузок на стены

Коэффициент запаса
11.11.21.31.41.5

Полистиролбетонные блоки — плюсы и минусы легкого бетона

При строительстве домов, владельцы загородных участков все чаще выбирают легкие бетоны, которые обладают положительными характеристиками и свойствами. Однако наряду с многочисленными преимуществами у таких материалов есть ряд недостатков, которые могут сыграть решающую роль при выборе строительного сырья. Для того чтобы разобраться стоит ли использовать ПСБ, рассмотрим, что такое полистиролбетонные блоки, плюсы и минусы полистиролбетона и его свойства.

Полистиролбетон – это материал, заполненный легкими гранулами вспененного полистирола (ПВГ), диаметром до 20 мм. Эти компоненты обладают поризированной, плотной или крупнопористой структурой, которая меняется в зависимости от эксплуатационных условий.

Помимо этого в составе есть, кварцевый песок, портландцемент или шлакопортладцемент и вода.

Также в полистиролбетон обязательно добавляют пластификаторы, ускорители затвердения, воздухововлекающие добавки и прочие компоненты. Чтобы получить пенополистиролбетон, в смесь добавляют специальную пену, которая не только уменьшает вес материала, но и обеспечивает его более высокими характеристиками морозоустойчивости и теплоизоляционными свойствами.

Полезно! Полистиролбетон не относится к категории ячеистых бетонов, однако по большинству характеристик он схож с ними. Тоже самое, касается и типоразмеров ПСБ, которые должны отвечать требованиям ГОСТ 21520-89.

Если говорить о том, какими полистиролбетонные блоки обладают плюсами и минусами, то справедливо будет начать с преимуществ этого материала.

Преимущества полистиролбетонных блоков

Современный строительный материал обладает следующими положительными сторонами:

Теплопроводность

Полистиролбетон не требует дополнительного утепления, так как обладает более низким коэффициентом теплопроводности (в пределах 0,055-0,145 Вт/м Со), чем другие виды бетонов. Кроме этого уровень теплосбережения повышается, если увеличивается плотность исходного сырья. Соответственно, чем большей плотностью будут обладать строительные блоки, тем более высоким будет и уровень энергосбережения.

Прочность

Легкий бетон обладает хорошими прочностными характеристиками: на сжатие (0,73-3,6 МПа) и на растяжение при изгибе (0,08-0,73 МПа). Класс прочности ПСБ составляет от В 0,5 до В 2,5. Исходя из этого, можно с уверенностью утверждать, что полистиролбетон – это пластичный и устойчивый к усадке бетон (не более 1,0 мм/м). Благодаря этому материал можно использовать для строительства монолитных стен.

Полезно! Блоки этого типа можно применять для строительства домов не выше 3 этажей.

Паропроницаемость

ПСБ обладают хорошей паропроницаемостью (способностью «дышать»), однако этот показатель зависит от плотности материала. Самый плотный состав D600 «выдает» показатель в 0,068 мг/ м·ч·ПА, а самая низкая марка D150 – 0,135 мг/ м·ч·ПА. Но даже при минимальном значении, уровень паропроницаемости у полистиролбетона выше, даже чем у древесины.

Удобство обработки

ПСБ обладают большими размерами (1 блок спокойно заменит 17 кирпичей) и точной геометрией. Благодаря последнему преимуществу толщина кладочного шва составляет порядка 3-5 мм.

Сам материал вы с легкостью распилите ножовкой. Все работы может выполнять один человек, так как, вес блоков минимален. Для самостоятельного возведения небольшого одноэтажного дома из ПСБ у вас уйдет 3-4 дня, при этом нет нужды в использовании дорогостоящей строительной техники. Кроме этого вы можете сэкономить на фундаменте, так как на него не будет оказываться больших нагрузок.

Также стоит выделить не менее важные плюсы блоков из полистиролбетона:

  • ПСБ обладают очень низкой влагопроницаемостью (водопоглощение не более 4%), благодаря чему, при строительстве дома, вам не придется беспокоиться о гидроизоляции.
  • При показателе плотности 200 кг/м3 блоки обладают показателями морозоустойчивости F 25 – F 100 (при 100-150 циклах замораживания/размораживания).
  • При толщине материала 10 см, уровень звукопоглощение будет достигать 37 Дб.
  • Устойчивость к образованию плесени и гнили.

Недостатки полистиролбетона

Несмотря на многочисленные плюсы полистиролбетон обладает недостатками, которые стоит учитывать при выборе ПСБ в качестве стройматериала:

  • При самостоятельном изготовлении ПСБ нужно использовать только качественный материал, в противном случае, в блоках могут образоваться микротрещины. Чтобы избежать таких последствий, рекомендуется добавлять в раствор армирующую фибру.
  • Внутреннюю поверхность стен необходимо покрывать штукатуркой. Но, стоит учитывать, что полистиролбетон плохо «сцепляется» со штукатурными составами, поэтому стены приходится предварительно подготавливать.
  • Шурупы, саморезы и гвозди практически невозможно использовать для внутреннего крепления. Чтобы повесить легкий шкафчик или полку необходимо либо покупать специальные крепежи (как для газобетона), либо бетонировать отверстия для метизов или применять жидкие анкеры.

Все эти «ухищрения» выливаются в дополнительные финансовые затраты, но на прочность постройки не влияют.

Также полистиролбетон обладает несколькими свойствами, которые не всегда можно отнести к минусам или плюсам.

Спорные моменты

Первое на что обращают внимание все производители – это срок службы материала, который составляет 100 лет. Однако, указывая целый век эксплуатации, они обычно основываются только на показатели морозоустойчивости ПСБ, упуская из вида свойства самого полистирола. Также как и любой полимер, ПВГ стареет и разрушается, превращаясь в газ. В случае с полистиролбетоном дела обстоят чуть лучше, так как гранулы внутри блоков защищены бетонной массой, но это не означает, что со временем этот материал не будет разрушаться.

Полезно! Вспененный полимер «стареет» в два раза быстрее, чем монолитные полимеры.

Следующий спорный момент – это горючесть ПСБ. С одной стороны, полистиролбетон относится к группе Г1 и обладает низкими горючими способностями. С другой стороны, пенопластовые шарики быстро теряют свои прочностные свойства при нагреве. А если ПСБ будет, какое-то время находится в огне, то ПВГ начнут испарять опасный для здоровья человека фенол и довольно быстро расплавятся. После этого стена из полистиролбетона будет выглядеть как швейцарский сыр.

Еще один спорный момент – это плотность ПСБ. В зависимости от типа работ, необходимо выбирать тот или иной класс полистиролбетона, так как его объемный вес колеблется от 150 до 600 кг/м3.

Класс плотностиДля каких работ подходят ПСБ
D150 – D300Блоки самой низкой плотности подойдут для теплоизоляционной облицовки и возведения несущих стен (внутренних) с пониженной нагрузкой
D350 – D500Для несущих внутренних стен с нормальной нагрузкой
D500 и болееДля возведения наружных стен невысоких объектов

Если выбрать материал низкой плотности для стены, в которой в дальнейшем будет размещаться, например, окно, то вы можете столкнуться с тем, что оно начнет «гулять», поэтому выбирайте более плотный материал.

В заключении

Полистиролбетон – это надежный материал, отвечающий всем требованиям ГОСТ и другим строительным нормативам, но и как любой другой бетон, он, все же, обладает некоторыми минусами.

Блок 20х30х60 (полистиролбетон) — Компания 31 Блок, Пенобетон Полистиролбетон ППС Пенопласт

Долго служат.

Полистиролбетон как и обычный бетон со временем только набирает прочноть. Имеет марку по морозостойкости F – 100, это означает что он выдерживает 100 циклов заморозки – разморозки без потери прочности, на практике это более 100 лет службы.

Теплые.

Теплопроводность полистиролбетона – 0,175 ( Вт/мС ), что практически эквиволентно деревянному брусу (0,140 ( Вт/мС )) . 30 см стены, по теплопроводности, эквиволентный 180 см стены из кирпича. На практике – зимой сохраняют тепло, летом прохладу.

Экономия при строительстве и эксплуатации

Благодаря крупному размеру блока, и относительно легкому весу (блок размером 20х30х60(см) весит около 22кг), возведение обьекта не требует большую бригаду и тяжелой грузоподьемной технике. А за счет того что блок имеет ровную геометрическую форму – при кладке стены образуется минимально тонкий шов что исключает появление мостиков холода в кладке. Отсутствие мостиков холода, в совокупности с низкими покозателями теплопроводности, обеспечивает хорошие покозатели энергоэффективности, что позволяет сыкономить на утеплении (при толшине стены 30см утепление не требуется), а при эксплуатациии и на отоплении.

Комфорт и экологичность

Благодаря тому что материал имеет низкую теплопроводность вы с легкостью сможете поддерживать комфортную температуру в помешении, зимой полистиролбетон держит тепло в доме, а летом не выпускает прохладу. Блоки “дышат” как дерево, имеют коэфициент паропраницаемость 0,068 мг/(м*ч*Па) ( у дерева 0,06 мг/(м*ч*Па) ) благодоря чему происходит естественная регуляция влажности.
Шумоизоляция – 30 см стены из полистиролбетона гасит более 70дБ шума (шум проезжающего поезда).
Все компоненты полистиролбетона экологически безопастны, пенополистирол используемый при изготовлении, такой же как применяется в пишевой промышленности. Клас горючести НГ (негорюч), полистиролбетоно не горит, при пожаре испоряются верхние гранулы полистирола (без образования вредных веществ), а тление и пламя отсутствуют.

Технология неразрушающей распалубки вибропрессованных полистиролбетонных стеновых камней и блоков

Теплоэффективные строительные материалы в современном строительстве

Современное энерго — ресурсосберегающее строительство предъявляет особые требования к используемым строительным материалам.

Зачастую традиционно применяемые в капитальном строительстве материалы не в полной мере отвечают возросшим требованиям в плане теплоэффективности ограждающих конструкций, энергосбережения и снижения себестоимости строительных работ.

В условиях значительного увеличения цен на энергоносители необходимость возведения зданий и сооружений, в полной мере отвечающих современным теплотехническим нормам и требованиям, представляется особенно актуальной.

Резкое увеличение объемов выпуска стеновых материалов низкой теплопроводности, лишний раз подтверждает перспективность данного направления.
Несомненными лидерами среди теплоэффективных стеновых материалов по праву являются ячеистые бетоны и бетоны на легких заполнителях. Мелкоштучные стеновые камни, блоки, панели и плиты из этих материалов активно используются как в малоэтажном, так и многоэтажном домостроении.

Низкая теплопроводность, отличные экологические показатели, малый объемный вес, легкость обработки и, наконец, возможность значительно снизить толщину стены, а, следовательно, и ее стоимость, открывает отличные перспективы массового применения ячеистых бетонов и бетонов на легких заполнителях (например, полистиролбетона) в современном строительстве.

К несомненным достоинствам ячеистого бетона неавтоклавного твердения и полистиролбетона  низкой плотности, следует также отнести возможность приготовления этих материалов на строительной площадке в непосредственной близости от места использования. Таким образом, возможность изготовления как теплоизоляционного, так и конструкционного материала различных плотностей непосредственно на строительной площадке позволяет значительно снизить транспортные расходы, отказаться от использования грузоподъемной техники и тем самым значительно снизить себестоимость строительных работ. 

Однако область применения полистиролбетона и пенобетона в строительстве не ограничивается организацией теплоэффективных стяжек и покрытий. Мелкоштучные стеновые камни и блоки на основе пористых материалов малой плотности активно используются в различных областях капитального строительства.

Наибольшее распространение получили стеновые блоки размерами 598х295х188мм для кладки на клей и блоки перегородочные толщиной 100мм, объемным весом 400-700 кг/м3. Именно этот типоразмер стеновых блоков в основном используется в малоэтажном строительстве в качестве материала несущих стен и в качестве самонесущего заполнителя в многоэтажном строительстве. Причем особый интерес представляют полистиролбетонные стеновые блоки объемным весом от 350 до 600 кг/м3 пригодные для возведения ограждающих конструкций зданий ограниченной этажности (обычно до трех этажей включительно).

На сегодняшний день именно полистиролбетон низких плотностей явный лидер на рынке теплоэффективных материалов по совокупности основных физико-механических характеристик, цены, доступности производства и применения в малоэтажном строительстве.

При сравнении со стеновыми материалами аналогичного назначения (пенобетон, газобетон) полистиролбетон выигрывает практически по всем параметрам (прочность, теплопроводность, водопоглощение, морозостойкость).
В части теплопроводности полистиролбетонные стеновые блоки, пригодные для возведения несущих ограждающих конструкций, вообще вне конкуренции.

Так, при средней плотности полистиролбетона 600 кг/м3, коэффициент теплопроводности в сухом состоянии 0.145 Вт/(м*°С), класс по прочности на сжатие В2.5 (марка прочности М 35), а морозостойкость F-50 F-100.

Производство полистиролбетона объективно менее затратное предприятие, нежели выпуск неавтоклавного пенобетона аналогичной плотности и тем более автоклавного газобетона. При этом основные проблемы, возникающие при производстве неавтоклавного пенобетона (нестабильная плотность получаемого материала,  саморазрушение материала в формах, большая усадка материала при высыхании, особые требования к качеству применяемого цемента), производителям полистиролбетона вообще не известны.

При подаче полистиролбетона на расстояние с использованием растворонасосов различной конструкции, бетон на легких заполнителях материал более стабильный и менее склонный к расслоению, нежели неатоклавный пенобетон аналогичной плотности.

Гранулы вспененного полистирола, полностью готовый к употреблению продукт, работа с которым хотя и достаточно специфична, но в основном строителям знакома и напоминает работу с любым другим легким заполнителем (например, керамзитовым гравием и керамзитовым песком).

При устройстве теплоизоляционных покрытий, кладочных и штукатурных растворов, готовые гранулы вспененного полистирола добавляются в приготавливаемый строительный раствор. После тщательного перемешивания полистиролбетон готов и можно приступать к его укладке.

Однако, если с использованием полистиролбетонной массы непосредственно на строительном объекте все более-менее ясно, формование мелкоштучных полистиролбетонных стеновых блоков имеет свою специфику и требует грамотного подхода.

Традиционно формование блоков из полистиролбетона производится литьевым способом, абсолютное большинство встречающихся рекомендаций по производству полистиролбетона основано именно на литьевом способе формования изделий.

Приготовленный в растворосмесителе полистиролбетон требуемой плотности посредством растворонасоса либо самотеком загружается в кассетные формы. После набора материалом распалубочной прочности, форма разбирается, перегородки снимаются и отформованный полистиролбетонный стеновой блок отправляется на участок сушки. Кассетные формы очищаются от остатков раствора, смазываются и снова собираются для повторной заливки. Причем практически все перечисленные операции выполняются в ручную, а возможность автоматизации этих работ требует очень значительных вложений.

Подобный способ формовки применяется и при производстве стеновых блоков из неавтоклавного пенобетона.

Достаточно хорошо известны основные плюсы и минусы формования стеновых блоков по литьевой технологии в кассетных формах, остановимся подробно лишь на основных из них:

МИНУСЫ литьевой технологии формования стеновых блоков

  1. Разборка и сборка кассетных форм занятие очень трудоемкое. От качества самих форм, их подготовки и сборки напрямую зависит геометрия, а соответственно и качество выпускаемых блоков. При всем богатстве выбора предлагаемых кассетных форм, лишь единичные модели теоретически способны обеспечить заявленные производителем максимальные отклонения линейных размеров при массовом выпуске стеновых блоков в реальных условиях отечественного производства.
  2. Необходимые производственные площади, занятые под выпуск стеновых блоков по литьевой технологии, непропорционально велики по отношению к скромным объемам выпускаемой продукции. Необходимость использования грузоподъемного оборудования для транспортировки заполненных кассетных форм на участок сушки предъявляет особые требования к производственным помещениям и их оснащению. Серьезные трудности при попытке существенного увеличения объемов выпуска стеновых блоков по литьевой технологии. Для набора изделиями необходимой распалубочной прочности требуется значительное время выдержки (обычно от 8 до 24 часов), при этом формующая оснастка не может быть использована повторно (например, при организации производства в две смены).
  3. Расход смазочных растворов, необходимых для подготовки форм к заливке, лишь на первый взгляд незначительный, при подсчете затрат смазочные материалы — серьезная статья расходов, влияющих на общую себестоимость производства стеновых блоков.
  4. Большое количество мало квалифицированных рабочих, занятых на производстве, что также связанно с необходимостью проведения трудоемких операций по обслуживанию и подготовке форм.
  5. Высокая стоимость качественных кассетных форм, способных обеспечить отклонение линейных размеров изделий не более 2мм, при массовом производстве стеновых блоков. Необходимость постоянного контроля состояния формующей оснастки, ее ремонт и при необходимости замена.
  6. Повышенный расход цемента для обеспечения регламентируемой прочности изделий как в первые сутки нормального твердения, так и на 28 сутки. Высокий расход цемента на производстве стеновых камней по литьевой технологии прежде всего связан с необходимостью работы при высоком В/Ц отношении. Как известно, чем выше содержание в бетоне не связанной (свободной) воды, тем ниже прочность бетонных изделий. Соответственно, для уменьшения расхода цемента, сокращения сроков набора изделиями распалубочной прочности следует по возможности стремиться к снижению В/Ц отношения, что труднодостижимо при литьевом способе формования.

ПЛЮСЫ литьевой технологии формования стеновых блоков

  1. На данный момент литьевой метод формования стеновых блоков единственный способ организации такого производства при минимальных первоначальных затратах.
  2. Возможность постепенного дооснащения производства кассетными формами при увеличении объемов выпуска стеновых блоков.

Таким образом, способ формования полистиролбетонных стеновых блоков по литьевой технологии нельзя признать оптимальным. Тем более, что литьевой способ формования в производстве полистиролбетонных стеновых камней был заимствован с производства стеновых блоков из неавтоклавного пенобетона.

Но неавтоклавный пенобетон — материал, который может быть отформован только лишь литьевым способом (резательная технология не в счет, так как пенобетонный массив под резку формируется также в формах и лишь потом подается на резку), а формование полистиролбетонного стенового блока возможно также и методом объемного вибропрессования на основе жесткой полистиролбетонной смеси, при максимально низком В/Ц отношении.

В отличие от литьевого способа формования изделий, метод объемного вибропрессования является наиболее перспективным, как в плане снижения себестоимости выпускаемой продукции, так и по соотношению: качество изделий — первоначальные затраты на приобретение необходимого оборудования.

Получение жестких полистиролбетонных смесей на производстве обычно не представляет каких-либо трудностей. Единственным обязательным условием получения жестких полистиролбетонных формовочных смесей, является использование смесителей принудительного действия, способных обеспечить максимально равномерное распределение полистирольных гранул в рабочем растворе.

Вибропрессованные полистиролбетонные стеновые блоки

Возможность получения полистиролбетонных стеновых блоков методом объемного вибропрессования позволяет вывести производство теплоэффективных строительных материалов на качественно новый уровень развития.

Снижение В/Ц отношения при переходе на жесткие формовочные смеси позволяет значительно сократить расход цемента и соответственно себестоимость выпускаемой продукции.

Формование стеновых блоков на сменных технологических поддонах открывает возможность кардинального сокращения необходимых производственных площадей. Изделия после моментальной распалубки, на технологических поддонах перемещаются на участок сушки, причем при небольших объемах производства технологический поддон вместе с отформованным стеновым блоком размерами 598х295х188мм может транспортироваться на участок сушки вручную, так как его вес составляет около 12-20кг. Формование изделий методом объемного вибропрессования происходит на одной формующей оснастке, поэтому геометрические размеры изделий совершенно идентичны, а возможные отклонения размеров вполне укладываются в требования действующего ГОСТа (+- 2мм, для кладки блоков на клей).

Таким образом, метод объемного вибропрессования полистиролбетонных стеновых блоков позволяет выпускать высококачественную продукцию мирового уровня при умеренных накладных расходах с использованием неспециализированных производственных площадей.

Причем на наш взгляд, основным производителем теплоэффективных строительных материалов в нашей стране должны стать малые предприятия строительной отрасли, выпускающие качественную конкурентоспособную продукцию, спрос на которую постоянно растет.

Именно малые предприятия с ограниченным выпуском продукции и небольшим штатом способны решать и уже сейчас решают проблему современного энерго-ресурсосберегающего строительства в регионах с использованием теплоэффективных строительных материалов местного производства.

Соответственно оборудование, используемое в производстве полистиролбетонных стеновых блоков должно отвечать нескольким условиям:

При высоком качестве выпускаемой продукции и производительности не менее 5- 12 м3 стеновых блоков (камней) в смену, комплект оборудования должен быть доступен для малых предприятий с ограниченным бюджетом.

Технология производства стеновых блоков должна быть доступна и легко воспроизводима вне зависимости от удаления производства от центра. Соответственно, необходимо опираться на местную сырьевую базу, исключить применение дефицитных добавок, а использовать материалы достаточно распространенные, учесть, что качество цемента в отдельных регионах не одинаково, а уровень автоматизации малого производства должен быть достаточным для обеспечения постоянно высокого качества выпускаемой продукции, но не избыточным.

Вышеперечисленным требованиям вполне отвечает технологическое оборудование производства завода «ТЕХПРИБОР» г. Тула.

Так, вибропресс типа «Борец», предназначенный для выпуска полистиролбетонных стеновых блоков и камней, спроектирован с учетом основных требований, предъявляемых к оборудованию для производства строительных материалов в условиях небольших предприятий.

Выше мы писали об основных преимуществах технологии формования изделий из полистиролбетона методом объемного вибропрессования по сравнению с литьевой технологией. Однако специфика производства полистиролбетона предъявляет особые требования к вибропрессовому оборудованию.

Большое количество гранул вспененного полистирола, равномерно распределенного в цементно-песчаной матрице, диктует собственные методы виброформования материала  совершенно не похожие на традиционно используемую технологию получения вибропрессованных бетонных камней. Также существенно различаются и правила подбора состава формовочной смеси.

Особенности виброформования полистиролбетонных смесей

Дело в том, что доля цемента и песка в полистиролбетоне не значительна, а содержание сферических гранул вспененного полистирола в смеси напротив велико. И, если виброуплотнение цементно-песчаной составляющей  при нагружающем воздействии плиты пуансона вибропресса приводит к равномерному уплотнению бетонной смеси, то чрезмерное уплотнение полистиролбетонной смеси под воздействием формующей плиты пуансона вызывает упругую деформацию гранул вспененного полистирола. Деформированные в процессе уплотнения гранулы полистирола после распалубки изделия восстанавливают первоначальную форму, что приводит к разрушению отформованного полистиролбетонного стенового блока на технологическом поддоне.

Принцип виброуплотнения цементно-песчаной смеси заключается в заполнении межзерновых пустот, уплотнении материала, повышении прочности изделий.

Однако, уменьшение (вплоть до практически полного заполнения) межзерновых пустот вызывает увеличение средней плотности материала и соответственно ухудшение его теплоизоляционных свойств.

Традиционно в практике производства песко-цементных стеновых камней используется метод формования пустот в теле камня. Пустоты выполняются различной конфигурации и объема, но их цель неизменна —  уменьшение объемного веса и повышение теплоизоляционных свойств материала.

Вместе с тем, производство стеновых камней большой пустотности требует более точного соблюдения технологического регламента производства, предъявляет повышенные требования к точности подбора состава бетона в плане определения В/Ц отношения и подбора гранулометрического состава заполнителя (например, песка различного модуля крупности).

Несущая способность пустотных стеновых камней ниже, чем у полнотелых при аналогичной марочной прочности изделий. Процент брака при производстве пустотных стеновых камней обычно выше, чем при формовании полнотелых изделий, что в первую очередь связанно с уменьшенной толщиной стенки пустотного стенового камня.

И, наконец, сроки безремонтной эксплуатации формующей оснастки (пуансон, матрица) вибропресса для выпуска полнотелых стеновых камней гораздо выше, чем срок службы оснастки под выпуск пустотных изделий.

При формовании стеновых камней (блоков) из полистиролбетона либо из бетона на других легких заполнителях (например, опилкобетона), учитывая, что снижение объемного веса для материала на основе легкого заполнителя достигается именно за счет использования большого объема самого легкого заполнителя, а коэффициент теплопроводности таких материалов достаточно низок, возможность выпуска пустотных стеновых камней на основе полистиролбетона представляется малоперспективной. Особенно, если учесть, что вибропрессованный полистиролбетон, имеющий объемный вес около 400-600 кг/м3, материал гораздо менее прочный, нежели песко-цементные стеновые камни и, если формование пустот песко-цементного стенового камня — совершенная необходимость, то в производстве полистиролбетонных камней малой плотности наличие пустот не так актуально.

Повышенный процент брака при формовании пустотных полистиролбетонных стеновых камней (учитывая малую прочность свежеотформованного полистиролбетона низких плотностей) также говорит о том, что производство полнотелых стеновых камней и блоков из полистиролбетона более удобное предприятие в плане подбора рабочих составов, формовки, технологических перемещений, погрузки и доставки материала потребителю.

Пустотообразователи, расположенные в формующей матрице, лишь препятствуют равномерному распределению полистиролбетонной смеси. В результате возможно появление незаполненных участков, что, безусловно, является браком формовки.

Производство полнотелых стеновых блоков и камней из полистиролбетона позволяет не только изготавливать материал объемным весом 400-600 кг/м3 и коэффициентом теплопроводности в сухом состоянии 0.10- 0.145 Вт/(М *оС), что полностью соответствует требованиям ГОСТ Р 51263-99, но и открывает возможность выпуска этого материала на неспециализированных площадях при упрощенном регламенте производства.

Таким образом, отказ от формования полистиролбетонных пустотных стеновых камней и блоков в пользу полнотелых изделий позволяет не только изготавливать материал полностью соответствующий требованиям действующего ГОСТа, но и свести к минимуму процент брака при формовке, перемещении и перевозке готовых изделий.

Также имеется и еще одно важное условие качественного формования стеновых блоков и камней из полистиролбетона.
Дело в том, что как говорилось выше, формование жесткой полистиролбетонной смеси должно производиться при минимальном воздействии верхнего пригруза (пуансона), а само виброуплотнение смеси не должно быть чрезмерным. Иными словами, плита пуансона при формовании полистиролбетонной смеси выполняет функцию не механизма уплотнения смеси, а поверхностно образующей пластины.

Основное уплотнение полистиролбетонной смеси производится за счет подачи виброимпульсов на стенки матрицы и уплотнении материала под собственным весом, при минимальном давлении пластины пуансона.

Таким образом, достаточно легкое виброуплотнение материала формирует структуру стенового блока способную сохранить форму изделия при распалубке и перемещении, но не приводящего к чрезмерному уплотнению цементно-песчаной составляющей смеси с практически полным заполнением пустот между гранулами вспененного полистирола.

Оставшиеся незаполненными микропустоты увеличивают теплосопротивление материала, уменьшают объемную массу и способствуют экономии материала.

Причем экономия материала при умеренном виброуплотнении в отдельных случаях составляет 20-25% (объем незаполненных песком и цементом пустот между полистирольными гранулами). Таким образом, объем незаполненных пустот при производстве полистиролбетонных стеновых блоков практически соответствует объему пустот, формируемых при изготовлении пустотных песко-цементных стеновых камней.

Соответственно, технология объемного вибропрессования полистиролбетонной смеси — это некий компромисс между необходимостью увеличения прочности материала (увеличение прочности необходимо для обеспечения моментальной распалубки изделий) и сохранением минимальных значений плотности и теплопроводности.

Для обеспечения этих условий требуется строго дозированная подача виброимпульсов к формируемому изделию, а также оригинальная схема неразрушающей распалубки отформованного стенового камня или блока.

Первую часть этих необходимых условий достаточно легко воспроизвести на неспециализированном вибропрессовом оборудовании после незначительных его доработок. Достаточно снизить интенсивность виброимпульсов и максимально облегчить вес плиты пуансона, исключив тем самым переуплотнение формуемой смеси и соответственно тем самым, снизив вероятность саморазрушения изделия после распалубки в результате упругой деформации гранул вспененного полистирола.
Со вторым условием все гораздо сложнее.

Схема распалубки изделий, традиционно используемая в вибропрессовом оборудовании для производства строительных материалов методом объемного вибропрессования — это движение формующей матрицы вверх относительно отформованного изделия. Отформованное изделие (стеновой камень, тротуарная плитка и т.д.) находится на технологическом поддоне, сверху его держит плита пуансона, а матрица, перемещаясь вверх, сходит с изделия.

Когда матрица уже практически не имеет контакта с отформованным изделием, плита пуансона также отделяется от изделия и поднимается вверх.

Таким образом, формующая оснастка вибропресса остается в верхнем положении, а отформованное изделие на технологическом поддоне готово к перемещению на участок сушки. Подобная схема движения формующей оснастки отлично себя зарекомендовала в производстве изделий на основе тяжелых песчаных бетонов, большинство выпускаемых вибропрессов построено именно по этой схеме.

Однако при формовании изделий на легких и особо легких заполнителях данная схема явно не является оптимальной и ее слепое копирование из технологии формования тяжелого бетона в технологию получения легкого бетона особо низких плотностей, несомненно, являлось бы ошибкой.

При попытке формования изделий из полистиролбетона плотностью 400-600 кг/м3 с применением стандартного (изначально предназначенного для формования изделий из тяжелого бетона) вибропрессового оборудования, даже после рекомендованных доработок (снижения интенсивности вибрации, уменьшения массы пуансона), наблюдается разрушение отформованных изделий на технологическом поддоне после немедленной распалубки.

Разрушение полистиролбетонных блоков и камней на технологическом поддоне в основном наблюдается при сходе матрицы с изделия либо при подъеме плиты пуансона, что объясняется малой прочностью свежеотформованных изделий.

Выходом из сложившейся ситуации, когда стандартное вибропрессовое оборудование либо вообще не в состоянии отформовать изделие из полистиролбетонной смеси отвечающее требованиям действующего ГОСТа, либо когда процент брака изделий при распалубке и технологической транспортировке непропорционально велик, могло бы стать создание специализированного вибропрессового оборудования, предназначенного для формования именно легких бетонов вообще и полистиролбетона объемным весом 400-600 кг/м3 в частности.

Соответственно, формование полистиролбетона требует применения специализированного вибропрессового оборудования.
Основное отличие такого вибропресса, способного обеспечить неразрушающую распалубку изделий из полистиролбетонной смеси малой плотности — оригинальная схема моментальной распалубки отформованных изделий.

На вибропрессе типа «Борец» формование полистиролбетонной смеси происходит вне подвижной матрицы. Для подачи отформованного изделия на технологическом поддоне служит толкатель, который обеспечивает максимально бережное перемещение отформованных изделий на линию подачи. При этом разрушение стеновых блоков и камней при распалубке полностью исключается.

Вибропресс типа «Борец» комплектуется двумя электромеханическими вибраторами и рычажным подвесом плиты пуансона, что обеспечивает гарантированное получение вибропрессованных полистиролбетонных блоков и камней основных типоразмеров, объемной массой от 350 кг/м3 полностью соответствующих требованиям ГОСТ Р 51263- 99.

Авторы серии статей «Строительная лоция» сотрудники завода «ТЕХПРИБОР»  Векслер М.В.
Липилин А.Б.

Пазогребневые блоки из полистиролбетона | Polimerbeton —

1.   Что такое полистиролбетон



2.   Область применения полистиролбетона



3.   Преимущества пазогребневых блоков из полистиролбетона


 

1.       Что такое полистиролбетон


  В состав полистиролбетона входят: цемент, вспененный полистирол (шарики пенопласта), вода и воздухововлекающие добавки. Все компоненты проходят испытания на безопасность для здоровья человека, что подтверждается соответствующими сертификатами СЭС. К цементу, воде и добавкам вопросов не у кого из потребителей не возникает. Главный миф вызывающий настороженность потребителей – это использование вспененного полистирола в составе бетона. На самом деле бояться этого компонента полистиролбетонной смеси стоит не больше чем всех остальных составляющих.



 Для получения гигиенического сертификата на полистиролбетон производитель предоставляет не только образец полистиролбетона в испытательную лабораторию, но и отдельно само сырьё, гранулы полистирола из которого при температурной обработке получаются шарики пенопласта. Там его помещают в камеру с датчиками, определяющими содержание газов в испытуемом веществе. Показания снимают три раза нагревая вещество до максимальной температуры в 60 градусов. Если у образца превышены показатели по стиролу или ещё каким-либо предельно допустимым веществам, то сертификат СЭС производитель не получит.


  Для изготовления полистиролбетона нет специальных сортов полистирола. Из этих же гранул производят подложки для продуктов питания, которые мы ежедневно видим в наших магазинах. Емкости для лапши быстрого приготовления в которых она заваривается при помощи кипятка. И наконец всем знакомые потолочная плитка и плинтуса из пенопласта, где пенопласт находится в открытом виде и каждый шарик не замурован в раствор, как в это происходит в полистиролбетоне.

2.       Область применения полистиролбетона


  В зависимости от изготавливаемой марки данный ячеистый бетон может быть конструкционным, самонесущим или использоваться в качестве монолитного утепления. Из него изготавливают такие штучные изделия как стеновые блоки, межкомнатные перегородки. Блоки производят двумя способами распиловкой предварительно изготовленного массива или заливкой полистиролбетонной смеси в формы.  



  Благодаря своим повышенным показателям прочности на растяжение при изгибе, 60% от прочности на сжатие, из армированного полистиролбетона в специальных формах производят «тёплые» перемычки и плиты перекрытия. Такие перемычки не нуждаются в дополнительном утеплении и могут быть использованы при строительстве зданий из любых ячеистых бетонов.


  Небольшой вес перемычек позволяет монтировать их без помощи подъёмных механизмов. К примеру вес перемычки из полистиролбетона размерами 200х300х1500 мм составляет около 60 кг, что вполне по силам двум каменщикам. 


 


  Низкие марки полистиролбетона сравнимы по теплотехническим характеристикам с минераловатной плитой. Так марка бетона Д200 имеет такие – же показатели теплопроводности, как и минераловатная плита ППЖ-200 — 0,07 Вт/м°С. В отличии от применения минплиты утепление монолитным полистиролбетоном позволяет получить следующие преимущества:

  • плотное прилегание утеплителя к основанию без образования пустот, как это не редко происходит при использовании минплиты 
  • нет потери тепла по стыковочным швам между рулонами утеплителя.
  • после того как полистиролбетон «схватился» на него можно стелить ламинат или клеить плитку в отличии от утепления минплитой, где на поверхности утеплителя необходимо вначале устраивать цементно-песчаную стяжку.
  • при попадании влаги он не накапливает влагу как минераловатная плита и легко её «отдаёт»


  При монолитном строительстве полистиролбетон укладывают в несъёмную опалубку или он служит монолитным утеплителем в колодезной кладке.


 3.       Преимущества пазогребневых блоков из полистиролбетона


  Блоки данного вида отливаются в специальных металлических формах, изготовленных на современном импортном оборудовании и имеют точные геометрические размеры с разницей по сторонам + 1 мм. Как правило формы делятся на два вида, для рядовых и угловых блоков.


 


  Основным преимуществом таких пазогребневых блоков является возможность возводить однослойную конструкцию наружных стен здания без дополнительного утепления снаружи. Ведь не малых денег стоит сам утеплитель, а ещё нужно заплатить за клей, крепёж и сами работы по монтажу утепления. Полистиролбетон теплее на 20 – 25 %, чем аналогичные марки пенобетона или газобетона. Пазогребневая конструкция блоков позволяет избежать потери тепла по вертикальным и горизонтальным швам кладки.


  Последние годы набирает популярность строительство домов из полистиролбетонных панелей. Заказчик выбирает проект и ему привозят готовый «домокомплект» из полистиролбетонных панелей различных размеров. Монтаж такого дома осуществляется при помощи крана и занимает не более недели. Это позволяет получать значительную экономию не только времени, но и средств на возведение «коробки».



  Важным моментом в строительстве таких домов является конструкция самой панели. Чтобы здание не получилась не только крупнопанельным, но и «крупнощелевым» для изготовления применяются формы для панелей с пазогребневым профилем.


  Какую бы конструкцию дома вы для себя не выбрали из полистиролбетонных пазогребневых блоков или панелей она будет менее затратной чем многослойная из других материалов с дополнительным утеплением. Строительство займёт значительно меньше времени, а качество будет только радовать. 


Живите в комфорте.

Полистиролбетон своими руками в домашних условиях: состав и пропорции

Полистиролбетон – это разновидность легкого бетона. В его состав входят цемент, вода, ПАД и полистирол. К преимуществам относят хорошие теплоизоляционные характеристики, малый вес, который создает минимальную нагрузку на основание дома. Его можно сделать самостоятельно в домашних условиях, и он легко обрабатывается.

Оглавление:

  1. Из чего состоит полистиролбетон?
  2. Инструкция по изготовлению
  3. Советы и рекомендации

Такой бетон заметно отличается прочностными характеристиками от других подобных материалов. Все благодаря высокой степени адгезии цемента с полистирольными гранулами. Для производства не требуется тяжелый щебень, поэтому блоки легко перевозить и класть даже одному человеку.

Состав и соотношение

Коэффициент теплопроводности зависит от плотности полистиролбетона, но находится он всегда в диапазоне 0,055-0,145 Вт/м·К. Хорошие теплоизоляционные свойства обеспечиваются за счет гранул. Для изготовления блоков используется гранулированный или дробленный полистирол, полученный из плит пенопласта. Лучше всего, если размер находится в диапазоне 2-4 мм. Самыми прочными получаются варианты, замешанные на гранулах кубической формы.

Различается полистиролбетон по структуре – она может быть плотной, с мелкими и крупными порами. В домашних условиях в основном изготавливают первый тип материала, так как для его производства не требуется специальное оборудование.

Циклов морозостойкости у полистиролбетона меньше, чем у других бетонных изделий. Если сделать блоки самому, то максимально возможный показатель морозостойкости не будет превышать F25, а у заводских – F25-100. Но этот недостаток перекрывается низким коэффициент теплопроводности, устойчивостью к солнечному излучению, плесени и хорошей степенью адгезии.

Бывает следующих видов:

  • теплоизоляционный – D150-200;
  • теплоизоляционно-конструкционный – D250-350;
  • конструкционно-теплоизоляционный – D400-600.

Для строительства стен потребуется марка не ниже D500, для менее нагружаемых конструкций, например, перегородок, достаточно D300-D400. Если блоки полистиролбетона будут применяться только в качестве теплоизоляционного слоя, то D200-D300. Также раствор отлично подходит для заливки пола на втором этаже дома. Тогда нагрузка на перекрытия будет меньше, чем при заливке стандартной бетонной стяжки. Каждый третий ряд кладки необходимо армировать, чтобы конструкция получилась максимально прочной.

Руководство приготовления по шагам

Перед тем как начать делать полистиролбетон своими руками, нужно точно рассчитать марку бетона. Так как именно от нее зависит максимальная нагрузка, которую он сможет выдержать. Блоки с минимальной прочностью используются только в теплоизоляционных целях, а с повышенной для строительства несущих конструкций.

Для их производства понадобится цементный порошок, полистирольные гранулы, поверхностно-активные добавки и вода. Пропорции компонентов напрямую зависят от назначения материала. Если нужна марка D200, то потребуется смешать все в следующем соотношении: 16 кг цементного порошка М400, 0,1 кг поверхностно-активных добавок и 9 л воды.

Чтобы получить D500, перемешиваются компоненты в другой пропорции: 4,1 кг цемента, 0,08 кг поверхностно-активных добавок и 15 л воды. Чем больше пропорция цемента в составе, тем выше его прочностные характеристики, но тем меньше теплоизоляционные свойства.

Наличие поверхностно-активных добавок обязательно, так как они способствуют равномерному распределению гранул по всему объему смеси и обволакиванию их цементом. Чтобы уменьшить расходы цемента и уплотнить раствор, в него можно всыпать песок, но не более 15% от всего объема цементного порошка. Если вместо ПАД применяется обычное моющее средство, то на 10 л воды достаточно 0,05 л.

В качестве поверхностно-активных добавок используется древесная обмыленная смола, моющее средство (для посуды, шампунь) или пластификаторы. Применяются в соотношении 2% от всего объема цементного порошка. Чем меньше цемента, тем больше их требуется вводить. Перед добавлением пластификаторов, следует изучить их инструкцию, так как некоторые из них необходимо заранее развести с водой, а другие сразу же засыпаются в раствор при замешивании. ПАД не только способствуют равномерному распределению цемента по смеси, но и снижает риск растрескивания материала.

Чтобы полистиролбетон получился наилучшего качества, необходимо соблюдать соотношения компонентов и последовательность их ввода. Если планируется изготавливать блоки, то сначала сооружаются формы. Сделать их можно из фанеры или досок. Если основание, на котором будут стоять формы, ровное, то необязательно обустраивать в них дно.

Пошаговая инструкция:

  1. В емкость или бетономешалку засыпается цемент и вода, после чего все перемешивается до однородной консистенции.
  2. В смесь всыпается просеянный песок.
  3. Добавляются гранулы полистирола, но не весь объем сразу, а лишь часть. Как только раствор перемешивается до однородного состояния, высыпают следующую часть гранул.
  4. Вливается поверхностно-активная добавка или моющее средство.

Если изготавливаются блоки в формах, то их оставляют застывать на 1-3 дня. Время схватывания зависит от температуры в помещении и влажности. После вытаскивания из форм оставляют набирать прочность на 2 недели, потом можно приступать к их кладке. Если полистиролбетон производится в зимнее время, то после заливки раствора в опалубку его нужно оставить минимум на неделю.

Полезные рекомендации

1. Чтобы конструкция прослужила как можно дольше, советуется закрыть ее отделочными материалами для защиты от внешних воздействий (атмосферных осадков, пыли), например, штукатуркой.

2. Добавляя воду при замешивании, следует учитывать, что смесь должна получиться не слишком жидкой и не сухой. Соотношение можно подобрать методом проб и ошибок на небольшом объеме. Если будет избыточное количество воды, то показатель прочности блоков ухудшится, а если недостаточное, то после высыхания в них появятся трещины.

3. Для замешивания рекомендуется приобретать только качественный полистирол и наполнители. Если использовать пластификатор неизвестной марки, то могут значительно ухудшиться показатели морозостойкости и устойчивости к влаге.

4. Для кладки используется специальный клеевой состав, но не цементно-песчаный раствор. Разводить его нужно только по указанному на нем руководству. Тогда швы получатся тонкими и вероятность появления мостиков холода снизится.

5. Чтобы проверить качество и правильность подобранного соотношения, советуется заранее изготовить несколько блоков и дождаться полного набора ими прочности. Качественный материал при распиливании не будет крошиться и разрушаться под тяжестью, а также выдержит постоянный нагрев в течение полутора часов.

6. Главный недостаток – это высокая цена. Чаще всего производят блоки габаритами 60х30х38 см (длина, ширина, высота).

Стоимость гранул зависит от их размера. Чем меньше фракция, тем выше цена, но тем прочнее и надежнее получится полистиролбетон. Песок можно не покупать, а использовать речной, главное – тщательно просеять от мусора.

Огнестойкие и изолированные блоки из полистиролбетона

О товарах и поставщиках:
 Получите доступ к качеству, долговечности и мощности.  полистиролбетонные блоки  на Alibaba.com для всех типов строительства, как жилых, так и коммерческих. Эти крепкие. Блоки из полистиролбетона   изготовлены из прочных материалов, которые обеспечивают долговечность и производительность при выполнении ваших задач. Файл.  Блоки из полистиролбетона , которые вы здесь найдете, сертифицированы и протестированы на максимальную устойчивость к внешним воздействиям и на надежность.Покупайте эти надежные продукты у ведущих поставщиков и оптовиков на сайте для выгодных сделок. 

Оптимальный стандарт. полистиролбетонные блоки , доступные здесь, изготовлены из качественных прочных материалов, таких как стеклопластик, металл, сталь и т. Д., Которые долговечны и защищают вашу собственность, создавая прочные стены и потолки. Эти крепкие. Блоки из полистиролбетона - это быстрые строительные материалы, которые могут сэкономить время и имеют улучшенную обработку поверхности, такую ​​как PE, PVDF и т. Д.Эти. Пенополистиролбетонные блоки имеют более длительный срок службы и гарантийный срок более 5 лет.

Alibaba.com предлагает широкий выбор. пенополистиролбетонные блоки разных размеров, цветов, качества материала и толщины. Эти продукты обладают такими характеристиками, как звукоизоляция, огнестойкость, устойчивость к внешним воздействиям и легкие. Эти. Блоки из полистиролбетона идеально подходят для жилых домов, офисов, заводов и других коммерческих объектов.Эти. Блоки из полистиролбетона идеально подходят для теплоизоляции, защиты окружающей среды и не выделяют никаких агрессивных веществ.

Alibaba.com предлагает разнообразные. Пенополистиролбетонные блоки Ассортимент поможет вам сэкономить деньги и купить качественную продукцию по самым доступным ценам. Эти продукты доступны как OEM-заказы вместе с индивидуальной упаковкой для размещения оптовых заказов. Они имеют сертификаты CE, ISO, SGS для гарантии качества.

Изготовление легких бетонных блоков из пенополистирола | Isowall Group

Изготовление легких бетонных блоков из пенополистирола | Isowall Group | Южная Африка

Изготовление легких бетонных блоков из пенополистирола

Альтернативной технологией строительства бетонных блоков является использование в его структуре доизмельченного пенополистирола (EPS) и первичных гранул.Блоки из полистиролбетона легкие, но прочные, и их главное преимущество — сильные теплоизоляционные свойства.

Шарики из пенополистирола представляют собой переработанные отходы полистирола, которые можно повторно использовать в строительстве легкого бетона с хорошими изоляционными свойствами.

Полистирол перерабатывается и превращается обратно в шарики EPS или измельченный материал, который затем смешивается с добавками и цементом для образования легких бетонных блоков. Полистиролбетон обычно изготавливается из смеси цементного заполнителя и кремнезема, переработанных гранул полистирола и модифицирующих агентов, таких как ускорители схватывания.

Эти бетонные блоки энергоэффективны, теплоизолированы и устойчивы к воздействию воды и пожара благодаря хорошо известным свойствам пенополистирола.

Пенополистирол (EPS), производимый компанией Isowall Group , быстро становится предпочтительным изоляционным материалом со стороны составителей «Ведомости объемов работ». Это во многом является результатом наших технических знаний, подкрепленных многолетним опытом работы в строительной отрасли.

Бетонные блоки из пенополистирола имеют более высокие изоляционные свойства для стен зданий. Бетонные стены с высокой степенью теплоизоляции обеспечивают дополнительную экономию энергии для клиента в течение всего срока службы здания. Это снижает затраты за счет дополнительной изоляции и контроля температуры.

Легкая структура бетонных блоков также является важным преимуществом в строительстве, поскольку снижает требования к конструкционному бетону и стали, которые обычно связаны с традиционными бетонными стенами.

Легкие бетонные блоки также минимизируют потребность в рабочей силе и строительстве, экономят деньги и улучшают общую скорость и продолжительность строительного проекта.

Легкие бетонные блоки

EPS остаются устойчивым и более экологически чистым способом реализации быстрых строительных систем, обеспечивающих долговечность, стабильность и отличные термические свойства.

Группа Isowall занимается производством и продажей продукции Isolite EPS, используемой в основном для изоляции, легких наполнителей и полужесткой амортизации.Наши шлифованные и первичные валики идеально подходят для изготовления легких бетонных блоков.

Virgin Beads упакованы в мешки по 5 кг и обычно продаются как 15 бисера DV; другие плотности могут быть изготовлены по запросу. Гранулы Regrind упакованы в мешки по 5 кг различной плотности.

ISOWALL ЯВЛЯЕТСЯ ВЫБОРОЧНЫМ ПОСТАВЩИКОМ В АФРИКЕ ДЛЯ ИЗОЛИРОВАННЫХ СЭНДВИЧ-ПАНЕЛЕЙ, ПРОДУКТОВ EPS И EPP.

Об авторе

Похожие сообщения

Ошибка

: Контент защищен !!

Кирпич из ячеистого бетона с заполнителем из переработанного пенополистирола

Кирпич из ячеистого бетона был получен путем использования легкого раствора с заполнителем из переработанного пенополистирола вместо песчаных материалов.После определения свойств блока (впитывание, прочность на сжатие и растягивающие напряжения) было обнаружено, что этот кирпич соответствует требованиям стандартов кладки, используемых в Мексике. Полученный материал легче товарного, что позволяет быстро его обрабатывать, контролировать качество и транспортировать. Он менее проницаем, что помогает предотвратить образование влаги, сохраняя свою прочность за счет большей адгезии, чем у сухого полистирола. Он был более гибким, что делало его менее уязвимым для растрескивания стен из-за смещения грунта.Кроме того, он экономичен, поскольку в нем используется материал, пригодный для вторичной переработки, и он обладает свойствами, предотвращающими порчу, увеличивая срок его службы. Мы рекомендуем использовать полностью сухой EP в сухой среде для получения наилучших свойств кирпича.

1. Введение

Легкий строительный раствор может быть получен разными способами и в основном зависит от воздушного фактора, то есть уменьшение плотности материала заключается во включении воздуха в его структуру, что может быть сделано путем замены крупного заполнителя. (песок) по воздуху.Таким образом, включение воздуха в структуру материала способствует образованию пузырьков (пустого пространства) внутри бетона или раствора. Поэтому при высыхании из воздушных отверстий образуется легкий материал. Этот тип бетона известен как ячеистый бетон . Было предложено определять легкий бетон как бетон, сделанный с легким заполнителем или без заполнителя, который позволяет получить меньший вес, чем у обычного бетона, равный 2400 кг / м 3 [1].

Что касается использования полистирола в бетонах, в литературе упоминается использование шариков из пенополистирола (EP) в качестве легкого заполнителя как в бетонах, так и в растворах, содержащих микрокремнезем в качестве дополнительного вяжущего материала.Было обнаружено, что полученные в результате бетоны имели плотность от 1500 до 2000 мкм / м 3 , с соответствующими значениями прочности от 10 до 21 МПа [2]. Другое исследование охватывает использование шариков из пенополистирола (EPS) и невспененного полистирола (UEPS) в качестве легкого заполнителя в бетонах, которые содержат летучую золу в качестве дополнительного вяжущего материала. Легкий бетон с широким диапазоном плотности бетона (1000–1900 кг / м 3 ) изучались в основном на прочность на сжатие, прочность на разрыв, миграцию влаги и поглощение.Результаты показывают, что при сопоставимых размерах заполнителя и плотности бетона бетон с заполнителем UEPS показал на 70% более высокую прочность на сжатие, чем заполнитель EPS [3].

Мелкодисперсный микрокремнезем значительно улучшил сцепление между EP-валиками и цементным тестом и увеличил прочность на сжатие EP-бетона. Исследования показали, что пенополистирол-бетон с плотностью 800–1800 кг / м 3 и прочностью на сжатие 10–25 МПа может быть получен путем частичной замены крупного и мелкого заполнителя валиками пенополистирола.Кроме того, добавление стальной фибры значительно улучшило усадку при высыхании [4].

Другое исследование показывает сравнение механических свойств EP-бетонов, содержащих летучую золу, с литературными результатами для бетонов, содержащих только обычный портландцемент в качестве связующего [5]. В исследовании предлагается разработать класс бетона с заполнителем из полистирола структурного качества с широким диапазоном плотности бетона от 1400 до 2100 кг / м 3 путем частичной замены крупного заполнителя полистирольным заполнителем в контрольном бетоне [6].

Латекс бутадиен-стирольного каучука в качестве полимерной добавки был применен в легком пенополистирольном (EP) бетоне. Было исследовано влияние условий твердения и соотношения полимер-цемент на прочность на сжатие и изгиб полимер-модифицированных EP-бетонов [7]. Затвердевший бетон, содержащий гранулы из химически обработанного пенополистирола, показал, что на прочность, жесткость и химическую стойкость бетона из полистирольного заполнителя постоянной плотности влияет соотношение воды и цемента [8].

В первой части этого исследования, основанного на определении и характеристиках легкого бетона, был проведен поиск рециклируемого материала с низкой плотностью, который можно было бы переработать с использованием дешевого экологически безопасного метода рециркуляции. Этим материалом был пенополистирол (EP). Из этого материала был получен строительный раствор, в котором крупные агрегаты были полностью заменены частицами с низкой плотностью. Таким образом, кирпичи состоят из переработанного пенополистирола в качестве заполнителя и коммерческого портландцемента в качестве связующего.В отличие от большинства работ, опубликованных в литературе, в этом растворе не используются пуццоланы, добавки или дополнительные заполнители. В этом предыдущем исследовании этот материал имел хорошую адгезию с гидратированным цементом, а лучшие механические свойства ячеистого бетона были получены при соотношении вода / цемент 0,4 и 600 мкг пенополистирола [9].

На втором этапе, в основе этого исследования, и с определенной технологией, конкретным технологическим применением раствора из вторичного материала было изготовление ячеистого кирпича.Они должны быть конкурентоспособными по цене, качеству, механическим и физическим свойствам по сравнению с существующими на рынке. Кроме того, в ячеистых кирпичах должен использоваться экологически чистый материал, пригодный для вторичной переработки.

2. Методы и методы

Действия, перечисленные ниже, позволили изготовить и провести механическую и физическую оценку кирпичей из ячеистого бетона; (i) получение и измельчение EP; (ii) применение водоцементного отношения 0,4; (iii) изготовление ячеистого бетона; (iv) изготовление кирпичей с использованием стальных форм толщиной? См; (v) снятие формы и определение сухого веса кирпичей; (vi) испытания на абсорбцию, сжатие и растяжение; Стандарт ASTM C67-03a включает три испытания [10]: (vii) отчет о результатах, (viii) сравнение результатов с заявленными значениями некоторых коммерческих кирпичей в Мексике.Прочность на сжатие легкого бетона из пенополистирола (EPS) значительно увеличивается с уменьшением размера валика EPS [11, 12]. Кроме того, другое исследование включает три размера частиц полистирола (1, 2,5 и 6,3 мкм) в бетоне и делает вывод, что размер 1 мкм имеет большее сопротивление сжатию [12]. Затем, поскольку целью проекта было повторное использование перерабатываемого материала, такого как пенополистирол, размер частиц зависел от устойчивого и дешевого процесса измельчения. Фактически, достигнутые размеры (2–4 мм) были очень близки к тем, о которых сообщалось как о большей прочности на сжатие [12].

В первую очередь был проведен поиск отходов ЭП. Эти остатки EP были от предметов, полученных в основном от упаковки компьютеров. После того, как материал был собран, его измельчали ​​с водой в кухонном блендере, потому что без воды измельчение было невозможным. Полученный размер частиц составил 2–4 мкм. Затем избыток воды удаляли, и ЭП сушили в естественных условиях, без использования печей.

В соответствии с предыдущими исследованиями, ячеистый бетон был получен путем смешивания 600 мкг полистирола и водоцементного отношения 0.4. В качестве цемента использовался CPC (композитный портландцемент).

Следует отметить, что одним из важных факторов, повлиявших на это исследование, была высокая влажность окружающей среды в месте проведения исследования (Росарио, Аргентина). Этот факт привел к получению жидкого композита, который позволил легко заполнять стальные формы.

Испытывали два типа образцов, обозначенных буквами A и B, с размерами? Мм. Тип А имел водоцементное соотношение 0,4, вес 0.600 кг EP в полувлажном состоянии и возраст 28 дней. Тип B имел такое же водоцементное соотношение, но вес полусухого EP составлял 0,520 кг. Возраст тестирования B составлял всего 14 дней из-за окончания проекта.

Из-за влажности окружающей среды, когда мы сушим влажный полистирол (полученный материал для процесса фрезерования) в течение 7 дней, мы получили вес 600 мкг для кирпичей A и B. Сразу же мы обрабатываем кирпичи A (с 600 мкг) на первом этапе проекта. Затем, когда через 28 дней был использован оставшийся полистирол, мы заметили, что вес уменьшился.Поэтому оставшийся материал был разделен и использован в пяти кирпичах B. Итак, кирпичи B содержали 520 мкг полистирола. Поэтому кирпичи А были изготовлены из «полувлажного» полистирола, а кирпичи В — из «полусухого» полистирола. Мы не получили полностью сухой вес EP из-за условий локальной влажности окружающей среды.

Уровни влажности окружающей среды для «полувлажного» и «полусухого» полистирола были одинаковыми; разница заключалась во времени экспозиции в этих условиях. Влажность окружающей среды в месте проведения эксперимента составляла 62–95% [14] (Росарио, Аргентина; август 2012 г.).Полистирол, названный «полувлажным», выдерживался 7 дней в этой среде и 28 дней в «полусухой».

Через 27 дней для кирпичей A и 13 дней для кирпича B кирпичи прошли испытание на абсорбцию (для этого экспериментального испытания требуется 24 ч [10] насыщения кирпичей для его оценки). Таким образом, результаты испытаний на абсорбцию были получены через 28 дней для кирпичей A и через 14 дней для кирпичей B при испытаниях на сжатие и растяжение.

Теоретически, при хранении во влажной среде около 90% прочности набирается за первые 28 дней.Основным критерием оценки прочности бетона на сжатие является прочность бетона на 28-е сутки. Бетонный образец испытывается через 28 дней, и результат этого испытания считается критерием качества и жесткости этого бетона [15].

3. Результаты и обсуждение

Статистическая оценка процента абсорбции A и B показана в таблице 1. Для измерения абсорбционной способности стандарт ASTM C67-03a указывает, что материал выдерживают погруженным в воду в течение 24 часов. [10].Процент абсорбции определяли по (1) [10]. Вес кирпича в сухом и насыщенном состоянии (и соответственно) до и после его насыщения составлял, соответственно:

Из таблицы 1 мы наблюдали, что кирпич B (полусухой EP) имеет меньшую абсорбцию, чем кирпич A (полувлажный EP). Хотя время исследования кирпича B составляет половину от A, тенденция к увеличению поглощения очень небольшая. Таким образом, очевидно, что этот материал может уменьшить влажность, образующуюся в стенах, построенных из других типов кирпича, поглощение которой больше из-за типа используемого заполнителя, такого как песок.

00 Статистические результаты Испытания [10] для обоих типов образцов площадью? мм показаны в Таблице 1. Следует напомнить, что кирпичам А было 28 дней, а кирпичам Б — 14 дней. Из-за вышесказанного различия в силе могли быть оправданы.Также можно заметить, что тенденция к увеличению прочности продолжается в образцах B, и она превысит значение, достигаемое образцами типа A, из-за большей адгезии (меньшей абсорбции), создаваемой полусухим EP.

Предел прочности на разрыв или модуль разрыва [10] был рассчитан как

где — предел прочности на разрыв или модуль разрыва (МПа), приложенная максимальная нагрузка (кг), — расстояние между опорами (см) (рассчитывается как длина образца минус 2 дюйма, поскольку опоры находятся на расстоянии 1 дюйма от каждого конца) , — горизонтальное расстояние от точки приложения нагрузки до места возникновения трещины (см), и — ширина и толщина образца соответственно (см).

Статистические результаты испытания на растяжение образцов типов A и B показаны в таблице 1. Они были определены из (2).

Из таблицы 1 среднее значение прочности на разрыв для образцов A и B составляет 2,195 и 1,632 МПа, соответственно. Образец типа B показал частичную прочность на разрыв по сравнению с той, которая может развиться за 28 дней.

Предполагается, что традиционные бетонные кирпичи с крупными заполнителями и кирпичи из обожженной глины имеют очень низкие значения прочности на разрыв, примерно 0.В среднем 8? МПа [13]. Таким образом, EP придает кирпичу изгибные свойства, которые способствуют стабильности стены, особенно когда он имеет восходящие и нисходящие движения, вызванные, среди прочего, проблемными почвами, такими как расширяющиеся и разрушающиеся почвы, изменения уровня грунтовых вод и землетрясения. Таким образом, этот материал уменьшает появление трещин в стене. Этот аспект не учитывался при производстве традиционных кирпичей.

Бетон вряд ли можно считать однородным, потому что свойства его составляющих разные и он в какой-то степени анизотропен.Тем не менее, подход механики разрушения помогает понять механизм разрушения бетона. Фактические пути разрушения обычно следуют за границами раздела самых крупных частиц заполнителя и прорезают цементную пасту, а иногда и сами частицы заполнителя [16].

Как и в бетоне, пути разрушения обычно проходят по границам раздела частиц заполнителя полистирола и прорезают цементное тесто и сами частицы заполнителя. При сжатии трещины примерно параллельны приложенной нагрузке, но некоторые трещины образуются под углом к ​​приложенной нагрузке (рис. 1).Параллельные трещины вызваны локализованным растягивающим напряжением в направлении, перпендикулярном сжимающей нагрузке; наклонные трещины возникают из-за обрушения, вызванного развитием плоскостей сдвига. Следует отметить, что характер разрушения при испытании на сжатие относится только к прямым напряжениям [16].

При испытании на изгиб максимальное растягивающее напряжение достигается в нижнем волокне испытательной балки, поэтому трещины вертикальные и находятся вблизи точки приложения нагрузки (рис. 2).В испытании на растяжение верхняя поверхность подвергается сжатию, в то время как нижняя поверхность подвергается растяжению. Фактически, концентрация напряжения в вершине трещины является трехмерной, но наибольшая слабость возникает, когда трещина ориентирована перпендикулярно направлению приложенной нагрузки. В действительно хрупком материале (однородное распределительное напряжение) энергии, выделяемой в начале распространения трещины, достаточно для продолжения этого распространения, потому что по мере расширения трещины максимальное напряжение увеличивается, а сопротивление хрупкому разрушению уменьшается.Как следствие, процесс ускоряется. В случае неоднородного напряжения (например, при изгибе) распространение трещины дополнительно блокируется окружающим материалом при более низком напряжении [16].

Таблица 2 показывает результаты свойств, полученных в образцах. Они сравниваются с параметрами, указанными в другом месте [13]. Из этой таблицы видно, что кирпич EP легче других, что облегчает их разработку, производство и транспортировку. Кроме того, этот материал обладает свойством низкой абсорбции, что помогает предотвратить возможное попадание влаги в стены.Кроме того, этот материал является стойким, так как его прочность на сжатие (с полусухим EP) аналогична заявленным максимальным коммерческим показателям, которые могут быть превышены при использовании EP в сухом состоянии. Наконец, этот материал может быть в четыре раза более гибким, чем некоторые коммерческие блоки, что делает его менее уязвимым для возможных трещин в стенах, вызванных восходящими или нисходящими движениями подстилающего грунта.


Свойство Количество данных Среднее Медиана Вариация Стандартное отклонение Коэффициент 14152
Коэффициент вариации 14159 A 6 9,328 9,135 0,842 0,917 9,84
Поглощение, B 6 4.464 4,21 0,284 0,533 11,95
Прочность на сжатие, A 5 9,69 9,3 0,840 0,96 9,3 0,840 0,96 0,840 0,96 6,916 7,28 0,598 0,773 11,18
Прочность на разрыв, A 6 2,195 2,22 0.254 0,503 22,95
Предел прочности на разрыв, B 5 1,632 1,64 0,002 0,046 2,85

ширина , и длина (см)


Свойство Кирпич A Кирпич B Кирпич из обожженной глины [13] Строительный кирпич [13]
6, 10, 20 6, 10, 20 5.5, 11,5, 23 18, 12, 38
Объемный вес (кг / м 3 ) 1568 1236 1580 1890
Среднее поглощение (%) 4,3 17,8 25,2
Прочность на сжатие (МПа) 9,69 6,92 11,16 4,69
Среднее напряжение разрыва 2,9465 0,755 0,794

Относительно высокие значения коэффициента вариации (таблица 1) в тесте зависели от типа теста и количества данных. Испытания на абсорбцию и сжатие имеют схожие значения коэффициента вариации; то есть мы видим тот же диапазон ошибок при выполнении теста, который можно уменьшить, увеличив количество тестов. Затем тест на растяжение показывает два очень разных коэффициента вариации, в основном из-за завершения теста, который требует большой точности и осторожности.В этом тесте мы заметили, что образец A имеет большую ошибку, чем образец B, потому что A был протестирован первым. Однако все данные по всем свойствам были выше контрольных значений в Таблице 2.

Оба материала (A и B) не имеют одинакового времени и количества полистирола. Образец A имеет полные начальные переменные, а B — нет. Следовательно, они не могут быть сопоставимы между собой. Итак, в этой работе мы сообщаем и анализируем свойства, приобретенные в образце A, а затем свойства, приобретенные в образце B (со ссылкой на образец A), потому что даже если этот материал имеет свои неполные начальные переменные, он становится значимыми свойствами именно из-за эта ситуация.Наконец, оба образца были лучше, чем контрольные материалы в таблице 2.

4. Выводы

Кирпич, разработанный в этом исследовании, показал эффективные механические свойства, и его можно было использовать в качестве кирпичной кладки в строительстве, поскольку этот материал соответствует требуемым параметрам. Он состоит из переработанного пенополистирола в качестве заполнителя и коммерческого портландцемента в качестве связующего. В отличие от большинства работ, описанных в литературе, в этом растворе не используются пуццоланы, добавки или дополнительные заполнители.

В отличие от бетона (с крупным заполнителем), пути разрушения всегда следуют за границами раздела частиц заполнителя полистирола и прорезают цементную пасту и сами частицы заполнителя. Трещины полистирольного кирпича аналогичны трещинам в бетоне, о которых сообщалось при испытании на сжатие и растяжение.

В результатах свойств мы наблюдали тот же диапазон ошибок при выполнении тестов, который можно уменьшить, увеличив количество тестов.

Устойчивое использование пенополистирола в кирпичах из ячеистого бетона было очень выгодным по сравнению с существующими на рынке.Полученный материал легче, что облегчает его изготовление и транспортировку, и менее проницаем, что позволяет избежать образования влаги, сохраняя его прочность. Кроме того, он более прочен и гибок, что делает его менее уязвимым к растрескиванию стен в результате движения грунта. Наконец, этот материал дешевле, потому что он использует перерабатываемый материал и обладает свойствами, предотвращающими его порчу, увеличивая срок его службы.

Мы наблюдаем, что влажность окружающей среды и влажность EP уменьшили свойства сопротивления кирпича и увеличили его плотность и впитываемость.Мы рекомендуем использовать полностью сухой EP в сухой среде для получения наилучших свойств кирпича.

(PDF) Использование отходов пенополистирола при разработке пустотелых блоков кирпичной кладки

клетка в качестве индикатора потери сцепления. С другой стороны, эта потеря

облигаций не существовала в блоках, принадлежащих партиям EMB10F и

EMB15F. В этих двух типах блоков

наблюдались глубокие трещины при растяжении, и волокнистая сетка была разорвана в месте расположения этих трещин

.С другой стороны, блоки EPSB20F и EPSB26F отображают

более постепенное и пластичное разрушение. На рис. 12 показан режим отказа для этих пяти типов полых блоков, армированных волокнистой сеткой.

4. Резюме и выводы

Была проведена экспериментальная программа по исследованию использования отходов вспененного поли-

стирола (EPS) для производства легких пустотелых блоков кладки

. Также было исследовано использование сварной стальной проволочной сетки и стекловолоконной сетки

для усиления оболочки блоков.

На основании результатов и наблюдений этого исследования можно сделать следующие выводы:

— На прочность на сжатие разработанных полых блоков из пенополистирола

существенно повлияло содержание пенополистирола в смеси.

Чистая прочность на сжатие полых блоков из пенополистирола составляет

от 6,9 до 2,4 МПа с соответствующим весом блока

в диапазоне от 19,5 до 10,6 кг. Контрольные полые блоки

,

имели прочность на сжатие 9.5 МПа и весила около

23,5 кг.

— Прочность на сжатие всех разработанных пустотелых блоков из пенополистирола

, кроме группы EPSB26, соответствовала требованиям ASTM по прочности —

для ненесущих каменных блоков. С другой стороны,

вся прочность разработанных пустотелых блоков соответствовала требованиям прочности

египетских стандартов EOS 2005/42

для ненесущих каменных блоков. Блоки типа EPSB10 также

соответствуют требованиям к прочности египетских стандартов

EOS 2005/42 для несущих кирпичных блоков.

— Увеличение дозировки EPS увеличило пластичность и ударную вязкость

полых блоков EPS. Разрушение стало более постепенным, а трещины стали менее заметными с введением

сварной проволочной сетки и армирующей обшивки из стекловолоконной сетки

.

— Наличие усиления обшивки блока в виде сварной стальной проволочной сетки

и стекловолоконной сетки не оказывает заметного влияния на прочность блока на сжатие.Однако это влияет на долговечность

и характер отказов блоков. Наличие армирующей сетки обшивки

привело к более постепенному разрушению, и блоки

сохранили свою целостность после разрушения.

— Частичная замена песка частицами ППС в смеси блока

привела к увеличению водопоглощения блоков

по сравнению с контрольными блоками. Среднее водопоглощение около 4% было зарегистрировано почти для всех блоков из пенополистирола

с различной дозировкой.

— Циклическое воздействие влажно-сухим способом 5% разбавленным раствором серной кислоты

показало, что присутствие частиц EPS привело к уменьшению процента потери веса

. Он также показал, что

на потерю прочности немного повлияло присутствие частиц

EPS по сравнению с контрольным образцом, за исключением

для нескольких выбросов. Потеря прочности для всех пустотелых блоков

составляла от 14,6% до 25.9%, за исключением блоков с выбросами

EPSB10P, EPSB10W и EPSB20W, где потеря прочности составила

g от 29,3% до 47,4%.

— Циклическое воздействие влажного и сухого насыщенного солевого раствора.

отрицательно повлияло на простые и армированные полые блоки из пенополистирола.

Все полые блоки пострадали от сохранения веса после сушки

циклов, что привело к длительной сушке из-за осаждения соли.

. Плоские пустотелые блоки пострадали от флюоресценции и микротрещин из-за кристаллизации соли.Потеря прочности на сжатие

составляет от 26,7% до 6,1%, в зависимости от содержания EPS

. Циклическое воздействие влажного и сухого водного раствора насыщенным солевым раствором

привело к ржавлению арматуры сварной проволочной сетки и разрушению арматуры из стекловолоконной сетки.

Потеря прочности блоков

, армированных сварной проволочной сеткой, была меньше, чем у простых блоков, за исключением групп EPSB10

и EPSB26. С другой стороны, потеря прочности для блоков, армированных стекловолокном

, была выше, чем у простого блока

для всех испытанных групп полых блоков.

Принимая во внимание прочность, ударную вязкость и долговечность полых блоков EPS

, как указано в этой статье, полый блок EPS может быть

подходящим для наружных и внутренних ненесущих стен

.

Справка об авторском взносе CRediT

Youmna A.Y. Али: Ресурсы, курирование данных, формальный анализ,

Исследование, Визуализация, Написание — просмотр и редактирование, Управление проектом

. Эззат Х.А.Фахми: привлечение финансирования, разработка концепции, методология, формальный анализ, обработка данных, визуализация, контроль, написание — первоначальный проект, администрирование проекта.

Мохамед Н. Абузейд: Финансирование, надзор, написание

— просмотр и редактирование. Юрий Б. Шахин: Наблюдение, написание —

просмотр и редактирование. Мохамед Н. Абдель Мути: Наблюдение, написание

— просмотр и редактирование.

Заявление о конкурирующих интересах

Авторы заявляют, что у них нет известных конкурирующих финансовых интересов или личных отношений, которые могли бы повлиять на работу, описанную в этой статье.

Благодарности

Эта публикация основана на работе, поддержанной Королем Абдуллой

Университет науки и технологий (KAUST), KSA и

Американский университет в Каире (AUC), Египет.

Список литературы

[1] K.S. Аль-Джабри, А.В. Хаго, А. Аль-Нуайми, А.Х. Аль-Саиди, Бетонные блоки для теплоизоляции

в жарком климате, Cem. Concr. Res. 35 (8) (2005) 1472–1479.

[2] Сатиш Чандра, Лейф Бернтссон, Легкий заполненный бетон, Уильям

Эндрю Паблишер, 2002, стр.450.

[3] Л. Гундуз, Использование квартетных смесей, содержащих зольную золу, шлак, перлитовую пемзу и цемент

, для производства пустотелых ячеистых легких кирпичных блоков для ненесущих стен

, Констр. Строить. Матер. 22 (5) (2008) 747–754.

[4] Хосам М. Салех, Саид М. Эль-Шейх, Эльсайед Э. Эльширафи, Адель К. Эсса,

Механические и физические характеристики цемента, армированного железным шлаком

и титанатными нановолокнами для создания улучшенной изоляции для радиоактивных

отходы, стр.Строить. Матер. 200 (2019) 135–145.

[5] Хосам М. Салех, Саид М. Эль-Шейх, Эльсайед Э. Эльширафи, Адель К. Эсса,

Характеристики композита из цементно-шлако-титанатных нановолокон, иммобилизованного в растворе радиоактивных отходов

во время заморозков и наводнений, Констр. Строить.

Матер. 223 (2019) 221–232.

[6] Джамал М. Хатиб, Устойчивое развитие строительных материалов, второе издание,

Woodhead Publishing, 2016, с. 742.

[7] Бинг Чен, Хуанью Лю, Свойства легкого пенополистирола

бетона, армированного стальной фиброй, Cem.Concr. Res. 34 (7) (2004) 1259–1263.

[8] Абдулкадир Кан, Рамазан Демирбога, Новая технология переработки отходов пенополистирола

в виде заполнителей, J. Mater. Процесс. Technol.

209 (6) (2009) 2994–3000.

[9] Алан Годвин, Универсальный бетонный блок для третьего мира, Indian Concr. J.

(1982) 240–241.

[10] Розанна Гаггино, Световые и изоляционные пластины для наружного закрытия корпуса,

Констр. Строить. Матер. 20 (10) (2006) 917–928.

[11] S.H. Перри, П. Бишофф, К. Ямура, Детали смеси и поведение материала полистирольного бетона

, Mag. Concr. Res. 43 (154) (1991) 71–76.

[12] И Сюй, Линьхуа Цзян, Цзинься Сюй, Ян Ли, Механические свойства пенополистирола, легкого заполнителя, бетона и кирпича,

, Констр. Строить. Матер. 27

(1) (2012) 32–38.

[13] Али Аллахверди, Сейед Амин Азми, Мехди Алибабайе, Разработка зеленого легкого реактивного порошкового бетона повышенной прочности

с использованием пенополистирольных шариков

, Констр.Строить. Матер. 172 (2018) 457–467.

Ю.А.Й. Али и др. / Строительные и строительные материалы 241 (2020) 118149 13

(PDF) Использование полистирола в производстве легкого кирпича

324

Иранский журнал полимеров / Том 12, номер 4 (2003)

Veiseh S. et al.

, а также плотность кирпича, что приводит к уменьшению массы

здания и повышению его устойчивости к землетрясениям

сил. Это связано с уменьшением прочности кирпичей на сжатие

.Основная проблема заключается в том, как минимизировать потерю прочности, которая сопровождает дополнительную пористость керамического тела, чтобы обеспечить достаточную несущую способность кирпичей [1].

Если в сырье добавить пластики,

можно увеличить объем пустот с помощью контролируемых процедур. За счет увеличения объема пустых пространств

уменьшается вес кирпичей. Этот

вызывает определенные свойства, например.г. повышенное термическое сопротивление —

в конечном продукте. Еще одним преимуществом легких кирпичей массой

является снижение транспортных расходов [2].

Изготовление легких кирпичей из пенополистирола — это патент

под названием «Porotone», в котором пенополистирол

используется для получения больших пор [3].

Пенополистирол подвергается термическому разложению в положении

при температурах 100-700 ° C без образования золы

. Освободившиеся в процессе газы стирола и бензола

уходят с дымовыми газами [3].

Некоторые кирпичные заводы используют пенополистирол, но для массового производства трубопровода

необходима заводская система вспенивания

. Необработанный заполнитель имеет насыпную плотность

примерно 700 кг / м

3

и поставляется в бочках по 125 кг

или картонных контейнерах по 1 тонне. Styropor P500 — это типичное торговое наименование

. Бочки и контейнеры

могут храниться приблизительно 6 месяцев и 4 недели, соответственно,

без каких-либо существенных потерь при аэрации добавок

[3].

Сырье извлекается из питателя с помощью червячной передачи

и направляется в дозатор пенообразующей машины inter-

. Попав внутрь вспенивающей машины

, необработанный заполнитель подвергается воздействию насыщенного пара

и постоянному перемешиванию. В результате образуются

минутных заполненных воздухом шариков из стирола с диаметрами от 0,5 до 3 мм и средней насыпной плотностью 12

кг / м

3

.Затем готовый вспененный полистирол

проходит через сушилку с псевдоожиженным слоем, где отдельные визуальные гранулы

сушатся и стабилизируются в атмосфере теплого воздуха

(50-60 ° C). После прохождения сушилки гранулы полистирола

выгружаются непосредственно в силосы для хранения

или выдуваются в них с помощью нагнетательных вентиляторов, в зависимости от расположения сушилки

. Каждый бункер для хранения

должен иметь объем примерно 100 м

3

.Количество бункеров

зависит от продолжительности хранения и суточного расхода

, при этом минимальный период хранения

должен быть гарантирован. Затем гранулы полистирола

извлекаются из силосов для хранения и передаются в проточные силосы pro-

через пневматическую конвейерную систему.

Производственный бункер обычно устанавливается непосредственно над двухвальным смесителем

экструзионной системы. Бесступенчатый дозирующий шнек

используется для извлечения шариков

из бункера [3].

Лабораторные испытания были проведены в рамках исследовательского проекта

(Хаук Д. и Юнг Э.) на трех кирпичах —

, производящих глины различного минералогического состава,

, которые используются для производства легких кирпичей

и блоки. Горючие материалы, такие как вспененный полистирол

, использовались для грубого порообразования. Что касается

с учетом размера частиц вспененного полистирола при увеличении прочности

, в предварительных испытаниях

наблюдалось уменьшение диаметра частиц с

примерно на 2.От 5 мм до 1 мм при одинаковой плотности керамического тела

можно получить примерно на 0,2% более высокую прочность

. Однако использование этого эффекта

в крупном промышленном масштабе по экономическим причинам ограничено использованием зерна смешанного размера,

, из-за значительно более высокого расхода полистирола с увеличением содержания полистирола. размер частиц [4].

В статье представлены некоторые результаты исследовательского проекта

«Производство легкого кирпича из полимерных материалов

», выполненного в Исследовательском центре строительства и жилищного строительства

.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы

Образцы грунта были взяты из шахты Форун-Абад

(23 км от дороги Тегеран-Гармсар). Химические испытания

, включая: определение процентного содержания Si, Al,

Ca, Mg, Fe, Cl, SO

4

, потери при возгорании при 1000 ° C, и физические испытания

, включая: предел жидкости, Предел пластичности и показатель пластичности

и материал мельче, чем сито № 100,

были выполнены на образцах.

Использован пенополистирол двух видов: «первичный» и

«вторичный». EPS был поставлен

Ayegh Plastic Co., Иран. «Девственный тип» использовался как полученный

, а «вторичный тип» использовался после просеивания

(сито 3,35 мм).

Процедуры

Испытания гранулометрического состава были проведены для

Использование полистирола в производстве легкого кирпича

Легкие синтетические добавки Advance Concrete | Журнал Concrete Construction

Благодаря высокой прочности на сжатие и способности принимать бесчисленные формы бетон является одним из самых полезных строительных продуктов человечества.Однако производители бетона знают, что большой вес материала создает множество проблем, таких как высокие затраты на транспортировку и установку, а также усталость рабочих.

Чтобы преодолеть эти и другие проблемы, люди на протяжении всей истории стремились уменьшить вес бетона без отрицательного воздействия на его характеристики. Одним из первых примеров является добавление древними римлянами пемзы и наполненных воздухом глиняных горшков на бетонную крышу Пантеона с куполом. В последние годы присадки стали намного более сложными, особенно с появлением сверхлегких синтетических заполнителей.

Среди них — шарики из легкого полистирола и пенополистирола (EPS). Эти маленькие шарики из пенопласта иногда ошибочно называют «пенополистиролом», но это другой материал.

CityMix
Легкие добавки на основе полистирола уменьшают вес бетона, сохраняя при этом полезные механические свойства.

Преимущества легких добавок к полистиролу

Сверхлегкие добавки на основе полистирола служат частичным объемным заменителем тяжелых песков и гравия в бетоне.Такие добавки снижают удельный вес бетона, что, в свою очередь, снижает вес конструкций, снижает затраты на транспортировку и снижает утомляемость рабочих, что приводит к снижению затрат и потенциально более высокой прибыли производителей бетона. Возможное снижение веса зависит от производимого бетонного продукта — порядка 5-15% для структурных бетонных строительных панелей, но потенциально до 80% для неструктурных бетонных объектов, таких как фанерный камень, декоративные молдинги. и ландшафтный блок.

Помимо уменьшения веса бетонных изделий, добавки на основе полистирола также могут улучшить характеристики бетона в нескольких ключевых областях. Основными среди этих свойств являются повышенная гибкость и упругость, улучшенная трещиностойкость и устойчивость к замораживанию / оттаиванию, а также улучшенные огнестойкие и термические характеристики.

В зависимости от добавки, заполнители на основе полистирола могут использоваться в различных конструкционных и неструктурных областях, в том числе:

  • Stucco
  • Шпонированный камень
  • Цементная плита
  • Архитектурный и промышленный сборный железобетон
  • Легкий пол с подачей насосом
  • Сборный
  • Ландшафтный блок
  • Добавки в почву

CityMix
Шарики из пенополистирола с покрытием равномерно распределяются по бетону.

Проблемы, связанные с добавками к полистиролу

Хотя сверхлегкие добавки на основе полистирола обладают множеством преимуществ, до недавнего времени они имели ряд недостатков, таких как:

  • Сверхлегкие шарики могут подниматься по воздуху на ветру или при общем перемешивании, что может затруднить обращение с ними и их смешивание в полевых условиях или на заводе.
  • Высокий статический заряд из-за присущего ему высокого статического заряда заставляет шарики цепляться за кожу, одежду и другие поверхности, что может затруднить работу с добавкой
  • Скопление шариков в бетонной смеси, или тенденция всплывать на поверхность, что препятствует равномерному распределению добавки по бетону
  • Использование первичного пенопласта в некоторых добавках может как увеличить стоимость добавки, так и нанести вред окружающей среде

Появляется новая технология

Строительство промышленные ученые недавно разработали новый класс добавок на основе полистирола, который обеспечивает все легкие легкие и механические преимущества обсуждались выше, при устранении недостатков.В этой уникальной запатентованной добавке, которая в настоящее время производится Insulfoam для CityMix, используются переработанные частицы EPS, заключенные во внешнюю оболочку, улучшающую эксплуатационные характеристики. В этом экономичном и сверхлегком продукте статическое электричество устранено, и добавлен вес частиц, достаточный для того, чтобы материал можно было легко обрабатывать и смешивать.

R Эциклированный и чистый EPS

Частицы EPS, используемые в этой новой легкой добавке, могут быть либо из первичного материала, либо переработаны из других продуктов EPS (таких как изоляция зданий, геопена, используемая в строительных работах, или упаковка продукции) , что позволяет отводить большие объемы отработанной пены с общественных свалок.

Бетон часто считают первым композитным строительным материалом человечества. Путем проб и ошибок древние цивилизации выяснили, как комбинировать песок, заполнители и цемент для получения исключительно прочного, но при этом адаптируемого строительного материала. Сегодня наука открыла способы дальнейшего улучшения бетона с помощью синтетических легких добавок, которые продолжают улучшаться год за годом.

Make Cement Wall Panel by EPS Expanded Polystyrene Styrofoam

Легкие цементные стеновые панели, также известные как бетонные стеновые панели из EPS (пенополистирола), представляют собой экологически чистый строительный материал, используемый для экологически чистых домов.Эта бетонная легкая стеновая панель производится путем смешивания цемента и небольших пенополистирольных шариков в качестве легкого заполнителя вместо щебня, используемого в обычном бетоне.

Легкие стеновые панели из пенополистирола, изготовленные из цемента с изолированной сердцевиной (вспененные частицы пенополистирола), имеют ряд преимуществ по сравнению с более традиционной смесью для бетонных блоков. Бетон из пенополистирола имеет улучшенные изоляционные свойства, особенно для теплоизоляции, и, поскольку он на 1/6 легче, чем бетонный блок на каменной основе, он может уменьшить занимаемое пространство стены, увеличить коэффициент использования жилого пространства, снизить нагрузку на конструкцию и уменьшить полная стоимость.

Шарики из полистирола добавляют изоляционные свойства и облегчают вес бетона, поэтому использование пенополистирола для смешивания цемента для изготовления бетона позволяет получить легкие легкие стеновые панели. Здесь вы узнаете, как сделать легкие цементные стеновые панели из пенополистирола EPS.

Шаг 1

Залейте воду в бетономешалку Hongfa. Количество воды зависит от размера бетоносмесителя, который вы выбираете, доступны смесители объемом 1м3, 2м3, 3м3, 4м3 или 5м3.Добавьте любую добавку, которую вы хотите использовать в бетоне, и тщательно смешайте добавки с водой.

Шаг 2

Добавьте портландцемент автоматически с помощью винтового конвейера. Если вы хотите смешать с песком или летучей золой, вы можете добавить песок и летучую золу во время процесса. Тщательно перемешайте с водой, чтобы получилась жидкая консистенция.

Шаг 3

Для изготовления стеновой панели из бетона EPS очень важны гранулы пенополистирола.В этом процессе поместите определенные частицы EPS после точного взвешивания с помощью весов Hongfa EPS рядом с трубами EPS. Перед добавлением дополнительных ведер пенополистирола перемешивайте в течение минуты, чтобы шарики впитали воду.

Шаг 4

Продолжайте добавлять пенополистирол EPS, выдерживая время для перемешивания в бетономешалке после добавления в цементную смесь. Пенополистирол быстро впитает воду из смеси. Если смесь станет слишком густой для включения шариков, при необходимости добавьте воды.

Шаг 5

Когда пенополистирол впитался и равномерно перемешался, он должен прекратить перемешивание бетона. Смесь должна быть легкой, текучей, но не слишком жидкой.

Шаг 6

Заполнение готового бетонного пенополистирола к машинам для производства стеновых панелей Hongfa. Есть три типа станков для производства цементных стеновых панелей Hongfa. Различные типы вагонеток для формования стеновых панелей имеют разные способы наполнения. Этот бетонный EPS будет использоваться в качестве материала для плиты или стены, поэтому после заливки готового бетонного EPS непосредственно в оборудование для стеновых панелей Hongfa его можно разместить и оставить для отверждения.Чтобы узнать более подробную информацию, пожалуйста, ознакомьтесь с тем, как производить цементные стеновые панели на заводах и оборудовании Hongfa.

Step 7

Снимите цементную стеновую панель с машины Hongfa Mold через 4-8 часов в зависимости от технологии отверждения. Этот процесс также называется извлечением стеновых панелей из цементной пластмассы.

Step 8

Затем, через определенные дни, бетонные стеновые панели EPS можно транспортировать на строительные площадки для строительства легких внутренних или внешних стен.

Зеленые бетонные стеновые панели из пенополистирола, производимые эксклюзивным заводом и оборудованием для производства цементных стеновых панелей Hongfa, становятся все более популярными в строительной сфере.

Leave a reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *